390 research outputs found
Steps to improve gender diversity in the fields of coastal geosciences and engineering
Robust data are the base of effective gender diversity policy. Evidence shows that gender inequality is still pervasive in science, technology, engineering and mathematics (STEM). Coastal geoscience and engineering (CGE) encompasses professionals working on coastal processes, integrating expertise across physics, geomorphology, engineering, planning and management. The article presents novel results of gender inequality and experiences of gender bias in CGE, and proposes practical steps to address it. It analyses the gender representation in 9 societies, 25 journals, and 10 conferences in CGE and establishes that women represent 30% of the international CGE community, yet there is under-representation in prestige roles such as journal editorial board members (15% women) and conference organisers (18% women). The data show that female underrepresentation is less prominent when the path to prestige roles is clearly outlined and candidates can self-nominate or volunteer instead of the traditional invitation-only pathway. By analysing the views of 314 survey respondents (34% male, 65% female, and 1% ‘‘other’’), we show that 81% perceive the lack of female role models as a key hurdle for gender equity, and a significantly larger proportion of females (47%) felt held back in their careers due to their gender in comparison with males (9%). The lack of women in prestige roles and senior positions contributes to 81% of survey respondents perceiving the lack of female role models in CGE as a key hurdle for gender equality. While it is clear that having more women as role models is important, this is not enough to effect change. Here seven practical steps towards achieving gender equity in CGE are presented: (1) Advocate for more women in prestige roles; (2) Promote high-achieving females; (3) Create awareness of gender bias; (4) Speak up; (5) Get better support for return to work; (6) Redefine success; and, (7) Encourage more women to enter the discipline at a young age. Some of these steps can be successfully implemented immediately (steps 1–4), while others need institutional engagement and represent major societal overhauls. In any case, these seven practical steps require actions that can start immediately
Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems
Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot
Retroviral intasomes search for a target DNA by 1D diffusion which rarely results in integration
Retroviruses must integrate their linear viral cDNA into the host genome for a productive infection. Integration is catalysed by the retrovirus-encoded integrase (IN), which forms a tetramer or octamer complex with the viral cDNA long terminal repeat (LTR) ends termed an intasome. IN removes two 3'-nucleotides from both LTR ends and catalyses strand transfer of the recessed 3'-hydroxyls into the target DNA separated by 4-6 bp. Host DNA repair restores the resulting 5'-Flap and single-stranded DNA (ssDNA) gap. Here we have used multiple single molecule imaging tools to determine that the prototype foamy virus (PFV) retroviral intasome searches for an integration site by one-dimensional (1D) rotation-coupled diffusion along DNA. Once a target site is identified, the time between PFV strand transfer events is 470 ms. The majority of PFV intasome search events were non-productive. These observations identify new dynamic IN functions and suggest that target site-selection limits retroviral integration.open1196sciescopu
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
Influence of the oxygen microenvironment on the proangiogenic potential of human endothelial colony forming cells
Therapeutic angiogenesis is a promising strategy to promote the formation of new or collateral vessels for tissue regeneration and repair. Since changes in tissue oxygen concentrations are known to stimulate numerous cell functions, these studies have focused on the oxygen microenvironment and its role on the angiogenic potential of endothelial cells. We analyzed the proangiogenic potential of human endothelial colony-forming cells (hECFCs), a highly proliferative population of circulating endothelial progenitor cells, and compared outcomes to human dermal microvascular cells (HMVECs) under oxygen tensions ranging from 1% to 21% O2, representative of ischemic or healthy tissues and standard culture conditions. Compared to HMVECs, hECFCs (1) exhibited significantly greater proliferation in both ischemic conditions and ambient air; (2) demonstrated increased migration compared to HMVECs when exposed to chemotactic gradients in reduced oxygen; and (3) exhibited comparable or superior proangiogenic potential in reduced oxygen conditions when assessed using a vessel-forming assay. These data demonstrate that the angiogenic potential of both endothelial populations is influenced by the local oxygen microenvironment. However, hECFCs exhibit a robust angiogenic potential in oxygen conditions representative of physiologic, ischemic, or ambient air conditions, and these findings suggest that hECFCs may be a superior cell source for use in cell-based approaches for the neovascularization of ischemic or engineered tissues
Circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells and arterial function in patients with beta-thalassaemia major
Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells
Regulation of Glucose Homeostasis by KSR1 and MARK2
Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism
On the Origin and Trigger of the Notothenioid Adaptive Radiation
Adaptive radiation is usually triggered by ecological opportunity, arising
through (i) the colonization of a new habitat by its
progenitor; (ii) the extinction of competitors; or
(iii) the emergence of an evolutionary key innovation in
the ancestral lineage. Support for the key innovation hypothesis is scarce,
however, even in textbook examples of adaptive radiation. Antifreeze
glycoproteins (AFGPs) have been proposed as putative key innovation for the
adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica.
A crucial prerequisite for this assumption is the concurrence of the
notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we
use a fossil-calibrated multi-marker phylogeny of nothothenioid and related
acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All
time-constraints are cross-validated to assess their reliability resulting in
six powerful calibration points. We find that the notothenioid radiation began
near the Oligocene-Miocene transition, which coincides with the increasing
presence of Antarctic sea ice. Divergence dates of notothenioids are thus
consistent with the key innovation hypothesis of AFGP. Early notothenioid
divergences are furthermore congruent with vicariant speciation and the breakup
of Gondwana
- …
