72 research outputs found
Distinguishing coherent and thermal photon noise in a circuit QED system
In the cavity-QED architecture, photon number fluctuations from residual
cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted
photons originate from a variety of sources, such as thermal radiation,
leftover measurement photons, and crosstalk. Using a capacitively-shunted flux
qubit coupled to a transmission line cavity, we demonstrate a method that
identifies and distinguishes coherent and thermal photons based on
noise-spectral reconstruction from time-domain spin-locking relaxometry. Using
these measurements, we attribute the limiting dephasing source in our system to
thermal photons, rather than coherent photons. By improving the cryogenic
attenuation on lines leading to the cavity, we successfully suppress residual
thermal photons and achieve -limited spin-echo decay time. The
spin-locking noise spectroscopy technique can readily be applied to other qubit
modalities for identifying general asymmetric non-classical noise spectra
Coherent Coupled Qubits for Quantum Annealing
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we examine an alternative approach using qubits with smaller I[subscript p] and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.United States. Office of the Director of National IntelligenceUnited States. Intelligence Advanced Research Projects ActivityUnited States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (FA8721-05-C-0002
Thermal and Residual Excited-State Population in a 3D Transmon Qubit
Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al., we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35–150 mK. Below 35 mK, the excited-state population saturates at approximately 0.1%. We verified this result using a flux qubit with ten times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff}=35 mK. Assuming T[subscript eff] is due solely to hot quasiparticles, the inferred qubit lifetime is 108 μs and in plausible agreement with the measured 80 μs.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002)United States. Army Research Office (Grant W911NF-14-1-0078)National Science Foundation (U.S.) (Grant PHY-1415514
The flux qubit revisited to enhance coherence and reproducibility
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T₁ across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T₂≈85 μs, approximately the 2T₁ limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T₂ in contemporary qubits based on transverse qubit–resonator interaction
Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits
Noise that exhibits significant temporal and spatial correlations across
multiple qubits can be especially harmful to both fault-tolerant quantum
computation and quantum-enhanced metrology. However, a complete spectral
characterization of the noise environment of even a two-qubit system has not
been reported thus far. We propose and experimentally validate a protocol for
two-qubit dephasing noise spectroscopy based on continuous control modulation.
By combining ideas from spin-locking relaxometry with a statistically motivated
robust estimation approach, our protocol allows for the simultaneous
reconstruction of all the single-qubit and two-qubit cross-correlation spectra,
including access to their distinctive non-classical features. Only single-qubit
control manipulations and state-tomography measurements are employed, with no
need for entangled-state preparation or readout of two-qubit observables. While
our experimental validation uses two superconducting qubits coupled to a shared
engineered noise source, our methodology is portable to a variety of
dephasing-dominated qubit architectures. By pushing quantum noise spectroscopy
beyond the single-qubit setting, our work paves the way to characterizing
spatiotemporal correlations in both engineered and naturally occurring noise
environments.Comment: total: 22 pages, 7 figures; main: 13 pages, 6 figures, supplementary:
6 pages, 1 figure; references: 3 page
- …
