262 research outputs found
Smooth Parametrizations in Dynamics, Analysis, Diophantine and Computational Geometry
Smooth parametrization consists in a subdivision of the mathematical objects
under consideration into simple pieces, and then parametric representation of
each piece, while keeping control of high order derivatives. The main goal of
the present paper is to provide a short overview of some results and open
problems on smooth parametrization and its applications in several apparently
rather separated domains: Smooth Dynamics, Diophantine Geometry, Approximation
Theory, and Computational Geometry.
The structure of the results, open problems, and conjectures in each of these
domains shows in many cases a remarkable similarity, which we try to stress.
Sometimes this similarity can be easily explained, sometimes the reasons remain
somewhat obscure, and it motivates some natural questions discussed in the
paper. We present also some new results, stressing interconnection between
various types and various applications of smooth parametrization
Geometry and Singularities of the Prony mapping
Prony mapping provides the global solution of the Prony system of equations
This system
appears in numerous theoretical and applied problems arising in Signal
Reconstruction. The simplest example is the problem of reconstruction of linear
combination of -functions of the form
, with the unknown parameters $a_{i},\
x_{i},\ i=1,...,n,m_{k}=\int x^{k}g(x)dx.x_{i}.$ The investigation of this type of
singularities has been started in \cite{yom2009Singularities} where the role of
finite differences was demonstrated.
In the present paper we study this and other types of singularities of the
Prony mapping, and describe its global geometry. We show, in particular, close
connections of the Prony mapping with the "Vieta mapping" expressing the
coefficients of a polynomial through its roots, and with hyperbolic polynomials
and "Vandermonde mapping" studied by V. Arnold.Comment: arXiv admin note: text overlap with arXiv:1301.118
Algebraic Fourier reconstruction of piecewise smooth functions
Accurate reconstruction of piecewise-smooth functions from a finite number of
Fourier coefficients is an important problem in various applications. The
inherent inaccuracy, in particular the Gibbs phenomenon, is being intensively
investigated during the last decades. Several nonlinear reconstruction methods
have been proposed, and it is by now well-established that the "classical"
convergence order can be completely restored up to the discontinuities. Still,
the maximal accuracy of determining the positions of these discontinuities
remains an open question. In this paper we prove that the locations of the
jumps (and subsequently the pointwise values of the function) can be
reconstructed with at least "half the classical accuracy". In particular, we
develop a constructive approximation procedure which, given the first
Fourier coefficients of a piecewise- function, recovers the locations
of the jumps with accuracy , and the values of the function
between the jumps with accuracy (similar estimates are
obtained for the associated jump magnitudes). A key ingredient of the algorithm
is to start with the case of a single discontinuity, where a modified version
of one of the existing algebraic methods (due to K.Eckhoff) may be applied. It
turns out that the additional orders of smoothness produce a highly correlated
error terms in the Fourier coefficients, which eventually cancel out in the
corresponding algebraic equations. To handle more than one jump, we propose to
apply a localization procedure via a convolution in the Fourier domain
Accuracy of spike-train Fourier reconstruction for colliding nodes
We consider Fourier reconstruction problem for signals F, which are linear
combinations of shifted delta-functions. We assume the Fourier transform of F
to be known on the frequency interval [-N,N], with an absolute error not
exceeding e > 0. We give an absolute lower bound (which is valid with any
reconstruction method) for the "worst case" reconstruction error of F in
situations where the nodes (i.e. the positions of the shifted delta-functions
in F) are known to form an l elements cluster of a size h << 1. Using
"decimation" reconstruction algorithm we provide an upper bound for the
reconstruction error, essentially of the same form as the lower one. Roughly,
our main result states that for N*h of order of (2l-1)-st root of e the worst
case reconstruction error of the cluster nodes is of the same order as h, and
hence the inside configuration of the cluster nodes (in the worst case
scenario) cannot be reconstructed at all. On the other hand, decimation
algorithm reconstructs F with the accuracy of order of 2l-st root of e
- …
