6,517 research outputs found
The Role of Chaos in One-Dimensional Heat Conductivity
We investigate the heat conduction in a quasi 1-D gas model with various
degree of chaos. Our calculations indicate that the heat conductivity
is independent of system size when the chaos of the channel is strong enough.
The different diffusion behaviors for the cases of chaotic and non-chaotic
channels are also studied. The numerical results of divergent exponent
of heat conduction and diffusion exponent are in consistent with the
formula . We explore the temperature profiles numerically and
analytically, which show that the temperature jump is primarily attributed to
superdiffusion for both non-chaotic and chaotic cases, and for the latter case
of superdiffusion the finite-size affects the value of remarkably.Comment: 6 pages, 7 figure
Medium effects on the selection of sequences folding into stable proteins in a simple model
We study the medium effects on the selection of sequences in protein folding
by taking account of the surface potential in HP-model. Our analysis on the
proportion of H and P monomers in the sequences gives a direct interpretation
that the lowly designable structures possess small average gap. The numerical
calculation by means of our model exhibits that the surface potential enhances
the average gap of highly designable structures. It also shows that a most
stable structure may be no longer the most stable one if the medium parameters
changed.Comment: 4 pages, 4 figure
Magneto-optical properties of Co/ZnO multilayer films
Multilayer films of ZnO with Co were deposited on glass substrates then
annealed in a vacuum. The magnetisation of the films increased with annealing
but not the magnitude of the magneto-optical signals. The dielectric functions
for the films were calculated using the MCD spectra. A Maxwell Garnett theory
of a metallic Co/ZnO mixture is presented. The extent to which this explains
the MCD spectra taken on the films is discussed.Comment: This paper was presented at ICM (2009) and is accepted in this form
for the proceeding
Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction
Reconnection of the self-generated magnetic fields in laser-plasma
interaction was first investigated experimentally by Nilson {\it et al.} [Phys.
Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a
solid target layer. An elongated current sheet (CS) was observed in the plasma
between the two laser spots. In order to more closely model magnetotail
reconnection, here two side-by-side thin target layers, instead of a single
one, are used. It is found that at one end of the elongated CS a fan-like
electron outflow region including three well-collimated electron jets appears.
The ( MeV) tail of the jet energy distribution exhibits a power-law
scaling. The enhanced electron acceleration is attributed to the intense
inductive electric field in the narrow electron dominated reconnection region,
as well as additional acceleration as they are trapped inside the rapidly
moving plasmoid formed in and ejected from the CS. The ejection also induces a
secondary CS
An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinet LiMn2O4
Electrochemical impedance spectra (EIS) for lithium ion insertion and deinsertion in spinel LiMn2O4 were obtained at different potentials and different temperatures during initial charge-discharge cycle. The results revealed that, at intermediate degrees of intercalation, three semicircles appeared in the Nyquist diagram. This new phenomenon has been investigated through EIS measurements as a function of temperature. It has found that the high frequency semicircle and the middle to high frequency semicircle begin to overlap each other above 20 degrees C, which indicates that the high frequency compressed semicircle commonly obtained at room temperature in the literature may consist of two semicircles. This signifies that the effects of the electronic and ionic transport properties of lithium intercalation materials clearly appear as separate features in the EIS spectra at low temperatures. A new equivalent circuit that includes elements related to the electronic and ionic transport, in addition to the charge transfer process, is proposed to simulate the experimental EIS data. The change of kinetic parameters for lithium ion insertion and deinsertion in spinel LiMn2O4 as a function of potential in the first charge-discharge cycle is discussed in detail, and a modified model is proposed to explain the impedance response of the insertion materials for lithium ion batteries.National Basic Research Program of China [2009CB220102
A Raman-Heterodyne Study of the Hyperfine Interaction of the Optically-Excited State D of Eu:YSiO
The spin coherence time of Eu which substitutes the yttrium at
site 1 in YSiO crystal has been extended to 6 hours in a recent work
[\textit{Nature} \textbf{517}, 177 (2015)]. To make this long-lived spin
coherence useful for optical quantum memory applications, we experimentally
characterize the hyperfine interaction of the optically-excited state D
using Raman-heterodyne-detected nuclear magnetic resonance. The effective spin
Hamiltonians for excited and ground state are fitted based on the experimental
spectra obtained in 200 magnetic fields with various orientations. To show the
correctness of the fitted parameters and potential application in quantum
memory protocols, we also characterize the ground-state hyperfine interaction
and predict the critical magnetic field which produces the 6-hour-long
coherence time. The complete energy level structure for both the F
ground state and D excited state at the critical magnetic field are
obtained. These results enable the design of quantum memory protocols and the
optimization of optical pumping strategy for realization of photonic quantum
memory with hour-long lifetime
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Quantum repeaters are critical components for distributing entanglement over
long distances in presence of unavoidable optical losses during transmission.
Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater
protocols based on quantum memories have been proposed, which commonly focus on
the entanglement-distribution rate. Among these protocols, the elimination of
multi-photons (multi-photon-pairs) and the use of multimode quantum memory are
demonstrated to have the ability to greatly improve the
entanglement-distribution rate. Here, we demonstrate the storage of
deterministic single photons emitted from a quantum dot in a
polarization-maintaining solid-state quantum memory; in addition,
multi-temporal-mode memory with , and narrow single-photon pulses
is also demonstrated. Multi-photons are eliminated, and only one photon at most
is contained in each pulse. Moreover, the solid-state properties of both
sub-systems make this configuration more stable and easier to be scalable. Our
work will be helpful in the construction of efficient quantum repeaters based
on all-solid-state devicesComment: Published version, including supplementary materia
- …
