29,002 research outputs found
On the modeling of low-Reynolds-number turbulence
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations
Control of carbon nanotube morphology by change of applied bias field during growth
Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy
Carbohydrate Mouth Rinsing Has No Effect on Power Output During Cycling in a Glycogen-reduced State
Background: The effect of mouth rinsing with a carbohydrate (CHO) solution on exercise performance is inconclusive
with no benefits observed in the fed state. This study examined the effect of CHO mouth rinse or CHO ingestion on
performance in 9 moderately trained male cyclists.
Methods: Four trials were undertaken, separated by 7 days, in a randomized, counterbalanced design. Each trial
included a 90-min glycogen-reducing exercise protocol, immediately followed by a low CHO meal and subsequent
overnight fast; the following morning a 1-h cycling time trial was conducted. The trials included 15 % CHO mouth
rinse (CHOR), 7.5 % CHO ingestion (CHOI), placebo mouth rinse and placebo ingestion. Solutions were provided after
every 12.5 % of completed exercise: 1.5 mL · kg−1 and 0.33 mL · kg−1 body mass during ingestion and rinse trials,
respectively. During rinse trials participants swirled the solution for 8 s before expectorating. Blood samples were taken
at regular intervals before and during exercise.
Results: Performance time was not different between trials (P = 0.21) but the 4.5-5.2 % difference between CHOI and
other trials showed moderate practical significance (Cohen’s d 0.57-0.65). Power output was higher in CHOI relative to
other trials (P < 0.01). There were no differences between CHOR and placebo groups for any performance variables.
Plasma glucose, insulin and lactate concentrations were higher in CHOI relative to other groups (P < 0.05).
Conclusions: In a fasted and glycogen-reduced state ingestion of a CHO solution during high-intensity exercise
enhanced performance through stimulation of insulin-mediated glucose uptake. The CHO mouth rinsing had neither
ergogenic effects nor changes in endocrine or metabolic responses relative to placebo
A Multi-level Algorithm for Quantum-impurity Models
A continuous-time path integral Quantum Monte Carlo method using the
directed-loop algorithm is developed to simulate the Anderson single-impurity
model in the occupation number basis. Although the method suffers from a sign
problem at low temperatures, the new algorithm has many advantages over
conventional algorithms. For example, the model can be easily simulated in the
Kondo limit without time discretization errors. Further, many observables
including the impurity susceptibility and a variety of fermionic observables
can be calculated efficiently. Finally the new approach allows us to explore a
general technique, called the multi-level algorithm, to solve the sign problem.
We find that the multi-level algorithm is able to generate an exponentially
large number of configurations with an effort that grows as a polynomial in
inverse temperature such that configurations with a positive sign dominate over
those with negative signs. Our algorithm can be easily generalized to other
multi-impurity problems.Comment: 9 pages, 8 figure
Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions
We propose the enhancement of yield in heavy ion collisions at
RHIC and LHC as a novel signal for the existence of diquarks in the strongly
coupled quark-gluon plasma produced in these collisions as well as in the
. Assuming that stable bound diquarks can exist in the quark-gluon
plasma, we argue that the yield of would be increased by two-body
collisions between diquarks and quarks, in addition to normal
three-body collisions among , and quarks. A quantitative study of
this effect based on the coalescence model shows that including the
contribution of diquarks to production indeed leads to a
substantial enhancement of the ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics
(Chiral07), Nov. 13-16, 2007, Osaka, Japa
The Most Massive Black Holes in the Universe: Effects of Mergers in Massive Galaxy Clusters
Recent observations support the idea that nuclear black holes grew by gas
accretion while shining as luminous quasars at high redshift, and they
establish a relation of the black hole mass with the host galaxy's spheroidal
stellar system. We develop an analytic model to calculate the expected impact
of mergers on the masses of black holes in massive clusters of galaxies. We use
the extended Press-Schechter formalism to generate Monte Carlo merger histories
of halos with a mass 10^{15} h^{-1} Msun. We assume that the black hole mass
function at z=2 is similar to that inferred from observations at z=0 (since
quasar activity declines markedly at z<2), and we assign black holes to the
progenitor halos assuming a monotonic relation between halo mass and black hole
mass. We follow the dynamical evolution of subhalos within larger halos,
allowing for tidal stripping, the loss of orbital energy by dynamical friction,
and random orbital perturbations in gravitational encounters with subhalos, and
we assume that mergers of subhalos are followed by mergers of their central
black holes. Our analytic model reproduces numerical estimates of the subhalo
mass function. We find that the most massive black holes in massive clusters
typically grow by a factor ~ 2 by mergers after gas accretion has stopped. In
our ten realizations of 10^{15} h^{-1} Msun clusters, the highest initial (z=2)
black hole masses are 5-7 x 10^9 Msun, but four of the clusters contain black
holes in the range 1-1.5 x 10^{10} Msun at z=0. Satellite galaxies may host
black holes whose mass is comparable to, or even greater than, that of the
central galaxy. Thus, black hole mergers can significantly extend the very high
end of the black hole mass function.Comment: 13 pages, 7 figures, accepted for publication in The Astrophysical
Journa
New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects
We present a general relativistic description of galaxy clustering in a FLRW
universe. The observed redshift and position of galaxies are affected by the
matter fluctuations and the gravity waves between the source galaxies and the
observer, and the volume element constructed by using the observables differs
from the physical volume occupied by the observed galaxies. Therefore, the
observed galaxy fluctuation field contains additional contributions arising
from the distortion in observable quantities and these include tensor
contributions as well as numerous scalar contributions. We generalize the
linear bias approximation to relate the observed galaxy fluctuation field to
the underlying matter distribution in a gauge-invariant way. Our full formalism
is essential for the consistency of theoretical predictions. As our first
application, we compute the angular auto correlation of large-scale structure
and its cross correlation with CMB temperature anisotropies. We comment on the
possibility of detecting primordial gravity waves using galaxy clustering and
discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review
- …
