81 research outputs found
Brownian Motion in wedges, last passage time and the second arc-sine law
We consider a planar Brownian motion starting from at time and
stopped at and a set of semi-infinite
straight lines emanating from . Denoting by the last time when is
reached by the Brownian motion, we compute the probability law of . In
particular, we show that, for a symmetric and even values, this law can
be expressed as a sum of or functions. The original
result of Levy is recovered as the special case . A relation with the
problem of reaction-diffusion of a set of three particles in one dimension is
discussed
Statistical Properties of Functionals of the Paths of a Particle Diffusing in a One-Dimensional Random Potential
We present a formalism for obtaining the statistical properties of
functionals and inverse functionals of the paths of a particle diffusing in a
one-dimensional quenched random potential. We demonstrate the implementation of
the formalism in two specific examples: (1) where the functional corresponds to
the local time spent by the particle around the origin and (2) where the
functional corresponds to the occupation time spent by the particle on the
positive side of the origin, within an observation time window of size . We
compute the disorder average distributions of the local time, the inverse local
time, the occupation time and the inverse occupation time, and show that in
many cases disorder modifies the behavior drastically.Comment: Revtex two column 27 pages, 10 figures, 3 table
On inversions and Doob -transforms of linear diffusions
Let be a regular linear diffusion whose state space is an open interval
. We consider a diffusion which probability law is
obtained as a Doob -transform of the law of , where is a positive
harmonic function for the infinitesimal generator of on . This is the
dual of with respect to where is the speed measure of
. Examples include the case where is conditioned to stay above
some fixed level. We provide a construction of as a deterministic
inversion of , time changed with some random clock. The study involves the
construction of some inversions which generalize the Euclidean inversions.
Brownian motion with drift and Bessel processes are considered in details.Comment: 19 page
Scaled penalization of Brownian motion with drift and the Brownian ascent
We study a scaled version of a two-parameter Brownian penalization model
introduced by Roynette-Vallois-Yor in arXiv:math/0511102. The original model
penalizes Brownian motion with drift by the weight process
where and
is the running maximum of the Brownian motion. It was
shown there that the resulting penalized process exhibits three distinct phases
corresponding to different regions of the -plane. In this paper, we
investigate the effect of penalizing the Brownian motion concurrently with
scaling and identify the limit process. This extends a result of Roynette-Yor
for the case to the whole parameter plane and reveals two
additional "critical" phases occurring at the boundaries between the parameter
regions. One of these novel phases is Brownian motion conditioned to end at its
maximum, a process we call the Brownian ascent. We then relate the Brownian
ascent to some well-known Brownian path fragments and to a random scaling
transformation of Brownian motion recently studied by Rosenbaum-Yor.Comment: 32 pages; made additions to Section
Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function
It is known that the moments of the maximum value of a one-dimensional
conditional Brownian motion, the three-dimensional Bessel bridge with duration
1 started from the origin, are expressed using the Riemann zeta function. We
consider a system of two Bessel bridges, in which noncolliding condition is
imposed. We show that the moments of the maximum value is then expressed using
the double Dirichlet series, or using the integrals of products of the Jacobi
theta functions and its derivatives. Since the present system will be provided
as a diffusion scaling limit of a version of vicious walker model, the ensemble
of 2-watermelons with a wall, the dominant terms in long-time asymptotics of
moments of height of 2-watermelons are completely determined. For the height of
2-watermelons with a wall, the average value was recently studied by Fulmek by
a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for
publication in J. Stat. Phy
Pricing and hedging of Asian options: Quasi-explicit solutions via Malliavin calculus
We use Malliavin calculus and the Clark-Ocone formula to derive the hedging strategy of an arithmetic Asian Call option in general terms. Furthermore we derive an expression for the density of the integral over time of a geometric Brownian motion, which allows us to express hedging strategy and price of the Asian option as an analytic expression. Numerical computations which are based on this expression are provided
Universality of the Wigner time delay distribution for one-dimensional random potentials
We show that the distribution of the time delay for one-dimensional random
potentials is universal in the high energy or weak disorder limit. Our
analytical results are in excellent agreement with extensive numerical
simulations carried out on samples whose sizes are large compared to the
localisation length (localised regime). The case of small samples is also
discussed (ballistic regime). We provide a physical argument which explains in
a quantitative way the origin of the exponential divergence of the moments. The
occurence of a log-normal tail for finite size systems is analysed. Finally, we
present exact results in the low energy limit which clearly show a departure
from the universal behaviour.Comment: 4 pages, 3 PostScript figure
On the exchange of intersection and supremum of sigma-fields in filtering theory
We construct a stationary Markov process with trivial tail sigma-field and a
nondegenerate observation process such that the corresponding nonlinear
filtering process is not uniquely ergodic. This settles in the negative a
conjecture of the author in the ergodic theory of nonlinear filters arising
from an erroneous proof in the classic paper of H. Kunita (1971), wherein an
exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page
Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time
We calculate analytically the probability density of the time
at which a continuous-time Brownian motion (with and without drift) attains its
maximum before passing through the origin for the first time. We also compute
the joint probability density of the maximum and . In the
driftless case, we find that has power-law tails: for large and for small . In
presence of a drift towards the origin, decays exponentially for large
. The results from numerical simulations are in excellent agreement with
our analytical predictions.Comment: 13 pages, 5 figures. Published in Journal of Statistical Mechanics:
Theory and Experiment (J. Stat. Mech. (2007) P10008,
doi:10.1088/1742-5468/2007/10/P10008
DIFFUSION IN ONE DIMENSIONAL RANDOM MEDIUM AND HYPERBOLIC BROWNIAN MOTION
Classical diffusion in a random medium involves an exponential functional of
Brownian motion. This functional also appears in the study of Brownian
diffusion on a Riemann surface of constant negative curvature. We analyse in
detail this relationship and study various distributions using stochastic
calculus and functional integration.Comment: 18 page
- …
