81 research outputs found

    Brownian Motion in wedges, last passage time and the second arc-sine law

    Full text link
    We consider a planar Brownian motion starting from OO at time t=0t=0 and stopped at t=1t=1 and a set F={OIi;i=1,2,...,n}F= \{OI_i ; i=1,2,..., n\} of nn semi-infinite straight lines emanating from OO. Denoting by gg the last time when FF is reached by the Brownian motion, we compute the probability law of gg. In particular, we show that, for a symmetric FF and even nn values, this law can be expressed as a sum of arcsin\arcsin or (arcsin)2(\arcsin)^2 functions. The original result of Levy is recovered as the special case n=2n=2. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed

    Statistical Properties of Functionals of the Paths of a Particle Diffusing in a One-Dimensional Random Potential

    Full text link
    We present a formalism for obtaining the statistical properties of functionals and inverse functionals of the paths of a particle diffusing in a one-dimensional quenched random potential. We demonstrate the implementation of the formalism in two specific examples: (1) where the functional corresponds to the local time spent by the particle around the origin and (2) where the functional corresponds to the occupation time spent by the particle on the positive side of the origin, within an observation time window of size tt. We compute the disorder average distributions of the local time, the inverse local time, the occupation time and the inverse occupation time, and show that in many cases disorder modifies the behavior drastically.Comment: Revtex two column 27 pages, 10 figures, 3 table

    On inversions and Doob hh-transforms of linear diffusions

    Full text link
    Let XX be a regular linear diffusion whose state space is an open interval ERE\subseteq\mathbb{R}. We consider a diffusion XX^* which probability law is obtained as a Doob hh-transform of the law of XX, where hh is a positive harmonic function for the infinitesimal generator of XX on EE. This is the dual of XX with respect to h(x)m(dx)h(x)m(dx) where m(dx)m(dx) is the speed measure of XX. Examples include the case where XX^* is XX conditioned to stay above some fixed level. We provide a construction of XX^* as a deterministic inversion of XX, time changed with some random clock. The study involves the construction of some inversions which generalize the Euclidean inversions. Brownian motion with drift and Bessel processes are considered in details.Comment: 19 page

    Scaled penalization of Brownian motion with drift and the Brownian ascent

    Full text link
    We study a scaled version of a two-parameter Brownian penalization model introduced by Roynette-Vallois-Yor in arXiv:math/0511102. The original model penalizes Brownian motion with drift hRh\in\mathbb{R} by the weight process (exp(νSt):t0){\big(\exp(\nu S_t):t\geq 0\big)} where νR\nu\in\mathbb{R} and (St:t0)\big(S_t:t\geq 0\big) is the running maximum of the Brownian motion. It was shown there that the resulting penalized process exhibits three distinct phases corresponding to different regions of the (ν,h)(\nu,h)-plane. In this paper, we investigate the effect of penalizing the Brownian motion concurrently with scaling and identify the limit process. This extends a result of Roynette-Yor for the ν<0, h=0{\nu<0,~h=0} case to the whole parameter plane and reveals two additional "critical" phases occurring at the boundaries between the parameter regions. One of these novel phases is Brownian motion conditioned to end at its maximum, a process we call the Brownian ascent. We then relate the Brownian ascent to some well-known Brownian path fragments and to a random scaling transformation of Brownian motion recently studied by Rosenbaum-Yor.Comment: 32 pages; made additions to Section

    Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

    Full text link
    It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for publication in J. Stat. Phy

    Pricing and hedging of Asian options: Quasi-explicit solutions via Malliavin calculus

    Get PDF
    We use Malliavin calculus and the Clark-Ocone formula to derive the hedging strategy of an arithmetic Asian Call option in general terms. Furthermore we derive an expression for the density of the integral over time of a geometric Brownian motion, which allows us to express hedging strategy and price of the Asian option as an analytic expression. Numerical computations which are based on this expression are provided

    Universality of the Wigner time delay distribution for one-dimensional random potentials

    Full text link
    We show that the distribution of the time delay for one-dimensional random potentials is universal in the high energy or weak disorder limit. Our analytical results are in excellent agreement with extensive numerical simulations carried out on samples whose sizes are large compared to the localisation length (localised regime). The case of small samples is also discussed (ballistic regime). We provide a physical argument which explains in a quantitative way the origin of the exponential divergence of the moments. The occurence of a log-normal tail for finite size systems is analysed. Finally, we present exact results in the low energy limit which clearly show a departure from the universal behaviour.Comment: 4 pages, 3 PostScript figure

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time

    Full text link
    We calculate analytically the probability density P(tm)P(t_m) of the time tmt_m at which a continuous-time Brownian motion (with and without drift) attains its maximum before passing through the origin for the first time. We also compute the joint probability density P(M,tm)P(M,t_m) of the maximum MM and tmt_m. In the driftless case, we find that P(tm)P(t_m) has power-law tails: P(tm)tm3/2P(t_m)\sim t_m^{-3/2} for large tmt_m and P(tm)tm1/2P(t_m)\sim t_m^{-1/2} for small tmt_m. In presence of a drift towards the origin, P(tm)P(t_m) decays exponentially for large tmt_m. The results from numerical simulations are in excellent agreement with our analytical predictions.Comment: 13 pages, 5 figures. Published in Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech. (2007) P10008, doi:10.1088/1742-5468/2007/10/P10008

    DIFFUSION IN ONE DIMENSIONAL RANDOM MEDIUM AND HYPERBOLIC BROWNIAN MOTION

    Full text link
    Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. We analyse in detail this relationship and study various distributions using stochastic calculus and functional integration.Comment: 18 page
    corecore