478 research outputs found

    Doob's maximal identity, multiplicative decompositions and enlargements of filtrations

    Full text link
    In the theory of progressive enlargements of filtrations, the supermartingale Zt=P(g>tFt)Z_{t}=\mathbf{P}(g>t\mid \mathcal{F}_{t}) associated with an honest time g, and its additive (Doob-Meyer) decomposition, play an essential role. In this paper, we propose an alternative approach, using a multiplicative representation for the supermartingale Z_{t}, based on Doob's maximal identity. We thus give new examples of progressive enlargements. Moreover, we give, in our setting, a proof of the decomposition formula for martingales, using initial enlargement techniques, and use it to obtain some path decompositions given the maximum or minimum of some processes.Comment: Typos correcte

    Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions

    Full text link
    This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.Comment: LaTeX; 40 pages; review pape

    On a flow of transformations of a Wiener space

    Full text link
    In this paper, we define, via Fourier transform, an ergodic flow of transformations of a Wiener space which preserves the law of the Ornstein-Uhlenbeck process and which interpolates the iterations of a transformation previously defined by Jeulin and Yor. Then, we give a more explicit expression for this flow, and we construct from it a continuous gaussian process indexed by R^2, such that all its restriction obtained by fixing the first coordinate are Ornstein-Uhlenbeck processes

    Options on realized variance and convex orders

    Get PDF
    Realized variance option and options on quadratic variation normalized to unit expectation are analysed for the property of monotonicity in maturity for call options at a fixed strike. When this condition holds the risk-neutral densities are said to be increasing in the convex order. For Leacutevy processes, such prices decrease with maturity. A time series analysis of squared log returns on the S&P 500 index also reveals such a decrease. If options are priced to a slightly increasing level of acceptability, then the resulting risk-neutral densities can be increasing in the convex order. Calibrated stochastic volatility models yield possibilities in both directions. Finally, we consider modeling strategies guaranteeing an increase in convex order for the normalized quadratic variation. These strategies model instantaneous variance as a normalized exponential of a Leacutevy process. Simulation studies suggest that other transformations may also deliver an increase in the convex order

    The fine structure of asset returns: an empirical investigation

    Get PDF
    We investigate the importance of diffusion and jumps in a new model for asset returns. In contrast to standard models, we allow for jump components displaying finite or infinite activity and variation. Empirical investigations of time series indicate that index dynamics are devoid of a diffusion component, which may be present in the dynamics of individual stocks. This leads to the conjecture, confirmed on options data, that the risk-neutral process should be free of a diffusion component. We conclude that the statistical and risk-neutral processes for equity prices are pure jump processes of infinite activity and finite variation

    Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, Via Conditioning

    Get PDF
    Derived from extensive teaching experience in Paris, this second edition now includes over 100 exercises in probability. New exercises have been added to reflect important areas of current research in probability theory, including infinite divisibility of stochastic processes, past-future martingales and fluctuation theory. For each exercise the authors provide detailed solutions as well as references for preliminary and further reading. There are also many insightful notes to motivate the student and set the exercises in context. Students will find these exercises extremely useful for easing the transition between simple and complex probabilistic frameworks. Indeed, many of the exercises here will lead the student on to frontier research topics in probability. Along the way, attention is drawn to a number of traps into which students of probability often fall. This book is ideal for independent study or as the companion to a course in advanced probability theory

    Multiplicative decompositions and frequency of vanishing of nonnegative submartingales

    Full text link
    In this paper, we establish a multiplicative decomposition formula for nonnegative local martingales and use it to characterize the set of continuous local submartingales Y of the form Y=N+A, where the measure dA is carried by the set of zeros of Y. In particular, we shall see that in the set of all local submartingales with the same martingale part in the multiplicative decomposition, these submartingales are the smallest ones. We also study some integrability questions in the multiplicative decomposition and interpret the notion of saturated sets in the light of our results.Comment: Typos corrected. Close to the published versio
    corecore