108 research outputs found
Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer
Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification
Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling
Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways
Mechanisms and models of somatic cell reprogramming
Whitehead Institute for Biomedical Research (Jerome and Florence Brill Graduate Student Fellowship)National Institutes of Health (U.S.) (US NIH grant RO1-CA087869)National Institutes of Health (U.S.) (US NIH grant R37-CA084198)National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) ((NIH) Kirschstein National Research Service Award,1 F32 GM099153-01A1)Vertex Pharmaceuticals Incorporated (Vertex Scholar
Human induced pluripotent stem cell models of neurodegenerative disorders for studying the biomedical implications of autophagy
A Novel Translocation Breakpoint within the BPTF Gene Is Associated with a Pre-Malignant Phenotype
Partial gain of chromosome arm 17q is an abundant aberrancy in various cancer types such as lung and prostate cancer with a prominent occurrence and prognostic significance in neuroblastoma – one of the most common embryonic tumors. The specific genetic element/s in 17q responsible for the cancer-promoting effect of these aberrancies is yet to be defined although many genes located in 17q have been proposed to play a role in malignancy. We report here the characterization of a naturally-occurring, non-reciprocal translocation der(X)t(X;17) in human lung embryonal-derived cells following continuous culturing. This aberrancy was strongly correlated with an increased proliferative capacity and with an acquired ability to form colonies in vitro. The breakpoint region was mapped by fluorescence in situ hybridization (FISH) to the 17q24.3 locus. Further characterization by a custom-made comparative genome hybridization array (CGH) localized the breakpoint within the Bromodomain PHD finger Transcription Factor gene (BPTF), a gene involved in transcriptional regulation and chromatin remodeling. Interestingly, this translocation led to elevation in the mRNA levels of the endogenous BPTF. Knock-down of BPTF restricted proliferation suggesting a role for BPTF in promoting cellular growth. Furthermore, the BPTF chromosomal region was found to be amplified in various human tumors, especially in neuroblastomas and lung cancers in which 55% and 27% of the samples showed gain of 17q24.3, respectively. Additionally, 42% percent of the cancer cell lines comprising the NCI-60 had an abnormal BPTF locus copy number. We suggest that deregulation of BPTF resulting from the translocation may confer the cells with the observed cancer-promoting phenotype and that our cellular model can serve to establish causality between 17q aberrations and carcinogenesis
In silico Docking Analysis for Blocking JUNO‐IZUMO1 Interaction Identifies Two Small Molecules that Block in vitro Fertilization
p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation
Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network
Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming
Summary: During somatic reprogramming, Yamanaka’s pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process. : Ward et al. show that Mybl2 expression level is a gatekeeper for the initiation of reprogramming. They find that Mybl2 overexpression leads to changes in the chromatin landscape, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for the AP1 family of transcription factors, known to be reprogramming blockers. Keywords: somatic reprogramming, mesenchymal-to-epithelial transition, chromatin landscape, ATAC-sequencing, reprogramming blockers, chromatin remodeling, induced pluripotent stem cells, AP1, Sox2, Ju
Modulated expression of WFDC1 during carcinogenesis and cellular senescence
Fibroblasts located adjacent to the tumor [cancer-associated fibroblasts (CAFs)] that constitute a large proportion of the cancer-associated stroma facilitate the transformation process. In this study, we compared the biological behavior of CAFs that were isolated from a prostate tumor to their normal-associated fibroblast (NAF) counterparts. CAFs formed more colonies when seeded at low cell density, exhibited a higher proliferation rate and were less prone to contact inhibition. In contrast to the general notion that high levels of α-smooth muscle actin serve as a marker for CAFs, we found that prostate CAFs express it at a lower level compared with prostate NAFs. Microarray analysis revealed a set of 161 genes that were altered in CAFs compared with NAFs. We focused on whey acidic protein four-disulfide core domain 1 (WFDC1), a known secreted protease inhibitor, and found it to be downregulated in the CAFs. WFDC1 expression was also dramatically downregulated in highly prolific mesenchymal cells and in various cancers including fibrosarcomas and in tumors of the lung, bladder and brain. Overexpression of WFDC1 inhibited the growth rate of the fibrosarcoma HT1080 cell line. Furthermore, WFDC1 level was upregulated in senescent fibroblasts. Taken together, our data suggest an important role for WFDC1 in inhibiting proliferation of both tumors and senescent cells. Finally, we suggest that the downregulation of WFDC1 might serve as a biomarker for cellular transformation
- …
