4,445 research outputs found
Anomalous elastic softening of SmRu_{4}P_{12} under high pressure
The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution
from a paramagnetic metal (phase I) to a probable multipolar ordering insulator
(phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III)
at T_{N} = 14 K. Elastic properties under hydrostatic pressures were
investigated to study the nature of the ordering phases. We found that distinct
elastic softening above T_{MI} is induced by pressure, giving evidence of
quadrupole degeneracy of the ground state in the crystalline electric field. It
also suggests that quadrupole moment may be one of the order parameters below
T_{MI} under pressure. Strangely, the largest degree of softening is found in
the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having
relevancy to the competing and very different Gruneisen parameters \Omega of
T_{MI} and T_{N}. Interplay between the two phase transitions is also verified
by the rapid increase of T_{MI} under pressure with a considerably large \Omega
of 9. Our results can be understood on the basis of the proposed octupole
scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure
Spin Dynamics of a Canted Antiferromagnet in a Magnetic Field
The spin dynamics of a canted antiferromagnet with a quadratic spin-wave
dispersion near \vq =0 is shown to possess a unique signature. When the
anisotropy gap is negligible, the spin-wave stiffness \dsw (\vq, B) =
(\omega_{\vq}-B)/q^2 depends on whether the limit of zero field or zero
wavevector is taken first. Consequently, \dsw is a strong function of
magnetic field at a fixed wavevector. Even in the presence of a sizeable
anisotropy gap, the field dependence of both \dsw and the gap energy
distinguishes a canted antiferromagnet from a phase-separated mixture
containing both ferromagnetic and antiferromagnetic regions.Comment: 10 pages, 3 figure
Toward Identification of Order Parameters in Skutterudites - a Wonderland of Strong Correlation Physics -
Current status is described toward identifying unconventional order
parameters in filled skutterudites with unique ordering phenomena. The order
parameters in PrFeP and PrRuP are discussed in relation
to associated crystalline electric field (CEF) states and angular form factors.
By phenomenological Landau analysis, it is shown that a scalar order model
explains most properties in both PrFeP and PrRuP with
very different magnetic properties. In particular, the highly anisotropic
susceptibility induced by uniaxial pressure in PrFeP is explained in
terms of two types of couplings. In the case of SmRuP, the main
order parameter at low field is identified as magnetic octupoles. A microscopic
mechanism is proposed how the dipole and octupole degrees of freedom mix under
the point group of skutterudites.Comment: To be published in Proc. International Conference on New Quantum
Phenomena in Skutterudite and Related Systems (Suppl. J. Phys. Soc. Jpn 78,
2008
Spin dynamical properties and orbital states of the layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (0.3 <= x < 0.5)
Low-temperature spin dynamics of the double-layered perovskite
La_2-2x_Sr_1+2x_Mn_2_O_7 (LSMO327) was systematically studied in a wide hole
concentration range (0.3 <= x < 0.5). The spin-wave dispersion, which is almost
perfectly 2D, has two branches due to a coupling between layers within a
double-layer. Each branch exhibits a characteristic intensity oscillation along
the out-of-plane direction. We found that the in-plane spin stiffness constant
and the gap between the two branches strongly depend on x. By fitting to
calculated dispersion relations and cross sections assuming Heisenberg models,
we have obtained the in-plane (J_para), intra-bilayer (J_perp) and
inter-bilayer (J') exchange interactions at each x. At x=0.30, J_para=-4meV and
J_perp=-5meV, namely almost isotropic and ferromagnetic. Upon increasing x,
J_perp rapidly approaches zero while |J_para| increases slightly, indicating an
enhancement of the planar magnetic anisotropy. At x=0.48, J_para reaches -9meV,
while J_perp turns to +1meV indicating an antiferromagnetic interaction. Such a
drastic change of the exchange interactions can be ascribed to the change of
the relative stability of the d_x^2-y^2 and d_3z^2-r^2 orbital states upon
doping. However, a simple linear combination of the two states results in an
orbital state with an orthorhombic symmetry, which is inconsistent with the
tetragonal symmetry of the crystal structure. We thus propose that an ``orbital
liquid'' state realizes in LSMO327, where the charge distribution symmetry is
kept tetragonal around each Mn site.Comment: 10 pages including 7 figure
- …
