74 research outputs found

    Effect of Enhanced Grain Refinement in Friction Welded SUS316L Alloy

    Get PDF
    To investigate the solid state weldability on SUS316L alloy, this work was carried out. Friction welding as a solid state welding was introduced and conducted at a rotation speed of 2,000 rpm and a friction pressure of 25 MPa on tube typed specimens. After this work, the grain boundary characteristic distributions such a grain size, shape and misorientation angle of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS316L resulted in a significant refinement of the grain size in the weld zone (6.03 μm) compared to that of the base material (57.55 μm). Despite the grain refinement, the mechanical properties of the welds indicate relatively low or similar to the base material. These mechanical properties are due to dislocation density in the initial material and grain refinement in the welds

    Response of the primary auditory and non-auditory cortices to acoustic stimulation: A manganese-enhanced MRI study

    Get PDF
    Structural and functional features of various cerebral cortices have been extensively explored in neuroscience research. We used manganese-enhanced MRI, a non-invasive method for examining stimulus-dependent activity in the whole brain, to investigate the activity in the layers of primary cortices and sensory, such as auditory and olfactory, pathways under acoustic stimulation. Male Sprague-Dawley rats, either with or without exposure to auditory stimulation, were scanned before and 24-29 hour after systemic MnCl2 injection. Cortex linearization and layer-dependent signal extraction were subsequently performed for detecting layer-specific cortical activity. We found stimulus-dependent activity in the deep layers of the primary auditory cortex and the auditory pathways. The primary sensory and visual cortices also showed the enhanced activity, whereas the olfactory pathways did not. Further, we performed correlation analysis of the signal intensity ratios among different layers of each cortex, and compared the strength of correlations between with and without the auditory stimulation. In the primary auditory cortex, the correlation strength between left and right hemisphere showed a slight but not significant increase with the acoustic simulation, whereas, in the primary sensory and visual cortex, the correlation coefficients were significantly smaller. These results suggest the possibility that even though the primary auditory, sensory, and visual cortices showed enhanced activity to the auditory stimulation, these cortices had different associations for auditory processing in the brain network.open0

    Self-Isolated Dual-Mode High-Pass Birdcage RF Coil for Proton and Sodium MR Imaging at 7 T MRI

    Get PDF
    This study presents the feasibility of a dual-mode high-pass birdcage RF coil to acquire MR images at both 1H and 23Na frequencies at ultra-high-field MR scanner, 7 T. A dual-mode circuit (DMC) in the dual-mode birdcage (DMBC) RF coil operates at two frequencies, addressing the limitations of sensitivity reduction and isolation between two frequencies as in traditional dual-tuned RF coil. Finite-difference time-domain (FDTD) based electromagnetic (EM) simulations were performed to verify the RF coil at each frequency on the three-dimensional human head model. The DMBC RF coil resonated at proton (1H) and sodium (23Na) frequencies, and also single-tuned high-pass birdcage RF coils were constructed for both 1H and 23Na frequencies. The bench test performance of the RF coils was evaluated using network analysis parameters, including the measurement of scattering parameters (S-parameters) and quality factors (Q-factors). Q-factor of the DMBC coil at 1H port was 10.2% lower than that of 1H single-tuned birdcage (STBC) coil, with a modest SNR reduction of 6.5%. Similarly, the Q-factor for the DMBC coil at 23Na port was 12.3% less than that of 23Na STBC coil, and the SNR showed a minimal reduction of 5.4%. Utilizing the DMBC coil, promising 1H and 23Na MR images were acquired compared to those by using STBC coils. In conclusion, deploying a DMBC 1H/23Na coil has been demonstrated to overcome traditional constraints associated with dual-tuned RF coils, achieving this with only nominal signal attenuation across both nuclei operational frequencies

    Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis

    Get PDF
    Background GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. Results Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range 7–78 months) and age at last examination was 7.4 years (range 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patients mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.This study was supported by a research program funded by the Korea Centers for Disease Control and Prevention (Grant No. 2018-ER6901-02)

    A Quick Method to Measure Hydroxyl Ion Contents in Bone Mineral Crystals Using Solid State NMR

    No full text

    State estimation of a nonlinear missile dynamic system via neural network

    Full text link

    Quantitative in-vivo imaging of tumor microenvironments

    No full text

    Quantitative in-vivo imaging of tumor microenvironments

    No full text
    Tumor hypoxia, which develops heterogeneously in locally advanced tumors is known to affect radiation sensitivity and development to metastases. In vivo knowledge of hypoxia distribution in solid tumors provides prognostic information and can be potentially used for input for dose escalation in radiation therapy. Tumor hypoxia results from a mismatch between supply and consumption of oxygen in a tumor. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is well known to provide permeability/perfusion information of solid tumors and may provide surrogate information regarding tumor hypoxia. In this study, (1) DCE-MRI data with the injection of Gd-DTPA was analyzed with Gaussian mixture model (GMM) based classification to verify regions of perfused, hypoxic, necrotic areas in a prostate rat tumor model. The results of pattern recognition on the DCE-MRI show the feasibility on delineation of tumor microenvironments. (2) To increase the spatial/temporal accuracy of such classification, a compressed sensing algorithm is used to enhance the quality of DCE-MRI uptake curves
    corecore