6,549 research outputs found
Frequency and power dependence of spin-current emission by spin pumping in a thin film YIG/Pt system
This paper presents the frequency dependence of the spin current emission in
a hybrid ferrimagnetic insulator/normal metal system. The system is based on a
ferrimagnetic insulating thin film of Yttrium Iron Garnet (YIG, 200 nm) grown
by liquid-phase-epitaxy (LPE) coupled with a normal metal with a strong
spin-orbit coupling (Pt, 15 nm). The YIG layer presents an isotropic behaviour
of the magnetization in the plane, a small linewidth, and a roughness lower
than 0.4 nm. Here we discuss how the voltage signal from the spin current
detector depends on the frequency [0.6 - 7 GHz], the microwave power, Pin, [1 -
70 mW], and the in-plane static magnetic field. A strong enhancement of the
spin current emission is observed at low frequencies, showing the appearance of
non-linear phenomena.Comment: 7 pages, 5 figure
Thermodynamical Properties of Hall Systems
We study quantum Hall effect within the framework of a newly proposed
approach, which captures the principal results of some proposals. This can be
established by considering a system of particles living on the non-commutative
plane in the presence of an electromagnetic field and quantum statistical
mechanically investigate its basic features. Solving the eigenvalue equation,
we analytically derive the energy levels and the corresponding wavefunctions.
These will be used, at low temperature and weak electric field, to determine
the thermodynamical potential \Omega^{nc} and related physical quantities.
Varying \Omega^{nc} with respect to the non-commutativity parameter \theta, we
define a new function that can be interpreted as a \Omega^{nc} density.
Evaluating the particle number, we show that the Hall conductivity of the
system is \theta-dependent. This allows us to make contact with quantum Hall
effect by offering different interpretations. We study the high temperature
regime and discuss the magnetism of the system. We finally show that at
\theta=2l_B^2, the system is sharing some common features with the Laughlin
theory.Comment: 20 pages, misprints correcte
Magnetization reversal and spin dynamics exchange in biased F/AF bilayers probed with complex permeability spectra
The spin dynamics of the ferromagnetic pinned layer of
ferro-antiferromagnetic coupled NiFe/MnNi bilayers is investigated in a broad
frequency range (30 MHz-6 GHz). A phenomenological model based on the
Landau-Lifshitz equation for the complex permeability of the F/AF bilayer is
proposed. The experimental results are compared to theoretical predictions. We
show that the resonance frequencies, measured during the magnetization, are
likewise hysteretic.Comment: 4 pages, 4 figure
Spin dynamics in exchange-biased F/AF bilayers
The spin dynamics of the ferromagnetic pinned layer of
ferro-antiferromagnetic coupled NiFe/MnNi bilayers is investigated in a broad
frequency range (30 MHz-6 GHz). A phenomenological model based on the
Landau-Lifshitz equation for the complex permeability of the F/AF bilayer is
proposed. The experimental results are compared to theoretical predictions.Comment: 12 pages, 3 figures, 1 tabl
Comparative analysis of anisotropic material properties of uniaxial nematics formed by flexible dimers and rod-like monomers
We report temperature dependencies of material properties such as dielectric anisotropy, birefringence, splay (K₁₁), twist (K₂₂), and bend (K₃₃) elastic constants of the uniaxial nematic (N) phase formed by flexible dimers of DTC5C9 and compare their behavior to that of a corresponding monomer MCT5. DTC5C9 forms a twist-bend nematic (Ntb) at temperatures below the N phase. Anisotropic properties of MCT5 are typical of the rod-like mesogens. In particular, birefringence increases as the temperature is reduced, following the classic behavior, described by Haller. The elastic constants also follow the standard behavior, with their ratios being practically temperature-independent. In contrast, DTC5C9 shows a dramatic departure from the standard case. Birefringence changes non-monotonously with temperature, decreasing on approaching the N-Ntb phase transition. K₃₃ decreases strongly to 0.4 pN near the N - Ntb transition, although remains finite. The ratios of the elastic constants in DTC5C9 show a strong temperature dependence that can be associated with the bend-induced changes in the orientational distribution function. The measured elastic properties are consistent with the tendency of the dimeric molecules to adopt bent configurations that give rise to the Ntb phase
Toilet assistive system designed for the reduction of accidental falls in the bathroom using admittance controller
This paper suggests an assistive system for the toilet with the objective of measuring human activities and to provide intelligent mechanical assistance to help seating and standing. The project intends to develop a seating assistance as a technical aid in order to reduce accidents and falls in the bathroom. The preferred technique is human-robot physical interaction algorithms known in collaborative robotics (cobot) and adapting it to a personalized assistance technology installed on a smart toilet. First, the design of the mechanical assistance is presented. Then, an admittance controller is designed and implemented in order to help the user in a similar way as a cobot could be used. This technique could be used to assist the user and improve balance with adequate training and an adequate configuration of the admittance controller
Trends and Costs of External Electrical Bone Stimulators and Grafting Materials in Anterior Lumbar Interbody Fusion.
STUDY DESIGN: Retrospective review.
PURPOSE: To identify the trends in stimulator use, pair those trends with various grafting materials, and determine the influence of stimulators on the risk of revision surgery.
OVERVIEW OF LITERATURE: A large number of studies has reported beneficial effects of electromagnetic energy in healing long bone fractures. However, there are few clinical studies regarding the use of electrical stimulators in spinal fusion.
METHODS: We used insurance billing codes to identify patients with lumbar disc degeneration who underwent anterior lumbar interbody fusion (ALIF). Comparisons between patients who did and did not receive electrical stimulators following surgery were performed using logistic regression analysis, chi-square test, and odds ratio (OR) analysis.
RESULTS: Approximately 19% of the patients (495/2,613) received external stimulators following ALIF surgery. There was a slight increase in stimulator use from 2008 to 2014 (multi-level R2=0.08, single-level R2=0.05). Patients who underwent multi-level procedures were more likely to receive stimulators than patients who underwent single-level procedures (p0.05), except those in the multilevel ALIF+PLF cohort, wherein the patients who underwent stimulation had higher rates of revision surgery.
CONCLUSIONS: Concurrent PLF or multi-level procedures increased patients\u27 likelihood of receiving stimulators, however, the presence of comorbidities did not. Patients who received BMA plus autograft or allograft were more likely to receive stimulation. Patients with and without bone stimulators had similar rates of revision surgery
Variabilité génétique du nombre de cellules épidermiques de l’hypocotyle dans l’embryon et identification des QTL contrôlant ce caractère chez la Légumineuse modèle Medicago truncatula
National audienc
Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation
Rockfall is one of the major concerns along different urban areas and highways all over the world. Al-Noor Mountain is one of the areas that threaten rockfalls to the Al-Noor escarpment track road and the surrounding urban areas. Thousands of visitors and tourisms use the escarpment track road to visit Hira cave which is located at the top of Al-Noor Mountain. In addition, the surrounding urban areas of Al-Noor Mountain are continuously spreading over the recent years. The escarpment track road and the surrounding urban areas are highly vulnerable and suffers from recurrent rockfall mostly in the rainy season. The steep and highly jointed slope along the different faces of the mountain makes these zones prone to failure due to different actions such as weathering, erosion and anthropogenic effect. Therefore, an attempt has been made in this study to determine the Al-Noor cliff stability, by identifying the unstable areas, and to apply the rockfall simulations. A combination of remote sensing, field study and 2D computer simulation rockfall program were performed to assess surface characteristics of the cliff faces. Bounce height, total and translational kinetic energy, translational velocity, and number of blocks have been estimated. Different unstable zones along the Al-Noor Mountain and escarpment track road were determined using filed investigation and remote sensing based image analysis. In addition the rockfall simulation analysis indicated that rockfall in zone 1 and zone 2 of the Al-Noor Mountain may reach the urban areas, whereas rockfall in zone 3 will not reach the urban areas, and rockfalls along the Al-Noor escarpment track road will have highly impact on the tourists. Proper preventive measures are also suggested to arrest the movement of falling rocks before reaching the urban areas and the Al-Noor escarpment track road. If proper care is taken, then further uncertain rockfall hazards can be prevented
Thermal simulation of magnetization reversals for size-distributed assemblies of core-shell exchange biased nanoparticles
A temperature dependent coherent magnetization reversal model is proposed for
size-distributed assemblies of ferromagnetic nanoparticles and
ferromagnetic-antiferromagnetic core-shell nanoparticles. The nanoparticles are
assumed to be of uniaxial anisotropy and all aligned along their easy axis. The
thermal dependence is included by considering thermal fluctuations, implemented
via the N\'eel-Arrhenius theory. Thermal and angular dependence of
magnetization reversal loops, coercive field and exchange-bias field are
obtained, showing that F-AF size-distributed exchange-coupled nanoparticles
exhibit temperature-dependent asymmetric magnetization reversal. Also,
non-monotonic evolutions of He and Hc with T are demonstrated. The angular
dependence of Hc with T exhibits a complex behavior, with the presence of an
apex, whose position and amplitude are strongly T dependent. The angular
dependence of He with T exhibits complex behaviors, which depends on the AF
anisotropy and exchange coupling. The resulting angular behavior demonstrates
the key role of the size distribution and temperature in the magnetic response
of nanoparticles.Comment: Revised arguments in Introduction and last sectio
- …
