199 research outputs found

    Rethinking Referring Object Removal

    Full text link
    Referring object removal refers to removing the specific object in an image referred by natural language expressions and filling the missing region with reasonable semantics. To address this task, we construct the ComCOCO, a synthetic dataset consisting of 136,495 referring expressions for 34,615 objects in 23,951 image pairs. Each pair contains an image with referring expressions and the ground truth after elimination. We further propose an end-to-end syntax-aware hybrid mapping network with an encoding-decoding structure. Linguistic features are hierarchically extracted at the syntactic level and fused in the downsampling process of visual features with multi-head attention. The feature-aligned pyramid network is leveraged to generate segmentation masks and replace internal pixels with region affinity learned from external semantics in high-level feature maps. Extensive experiments demonstrate that our model outperforms diffusion models and two-stage methods which process the segmentation and inpainting task separately by a significant margin

    SLNSpeech: solving extended speech separation problem by the help of sign language

    Full text link
    A speech separation task can be roughly divided into audio-only separation and audio-visual separation. In order to make speech separation technology applied in the real scenario of the disabled, this paper presents an extended speech separation problem which refers in particular to sign language assisted speech separation. However, most existing datasets for speech separation are audios and videos which contain audio and/or visual modalities. To address the extended speech separation problem, we introduce a large-scale dataset named Sign Language News Speech (SLNSpeech) dataset in which three modalities of audio, visual, and sign language are coexisted. Then, we design a general deep learning network for the self-supervised learning of three modalities, particularly, using sign language embeddings together with audio or audio-visual information for better solving the speech separation task. Specifically, we use 3D residual convolutional network to extract sign language features and use pretrained VGGNet model to exact visual features. After that, an improved U-Net with skip connections in feature extraction stage is applied for learning the embeddings among the mixed spectrogram transformed from source audios, the sign language features and visual features. Experiments results show that, besides visual modality, sign language modality can also be used alone to supervise speech separation task. Moreover, we also show the effectiveness of sign language assisted speech separation when the visual modality is disturbed. Source code will be released in http://cheertt.top/homepage/Comment: 33 pages, 8 figures, 5 table

    SpineCLUE: Automatic Vertebrae Identification Using Contrastive Learning and Uncertainty Estimation

    Full text link
    Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease. Most spine CT contain only local regions, such as the neck, chest, and abdomen. Therefore, identification should not depend on specific vertebrae or a particular number of vertebrae being visible. Existing methods at the spine-level are unable to meet this challenge. In this paper, we propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level. By sequentially performing the tasks of vertebrae localization, segmentation, and identification, the anatomical prior information of the vertebrae is effectively utilized throughout the process. Specifically, we introduce a dual-factor density clustering algorithm to acquire localization information for individual vertebra, thereby facilitating subsequent segmentation and identification processes. In addition, to tackle the issue of interclass similarity and intra-class variability, we pre-train our identification network by using a supervised contrastive learning method. To further optimize the identification results, we estimated the uncertainty of the classification network and utilized the message fusion module to combine the uncertainty scores, while aggregating global information about the spine. Our method achieves state-of-the-art results on the VerSe19 and VerSe20 challenge benchmarks. Additionally, our approach demonstrates outstanding generalization performance on an collected dataset containing a wide range of abnormal cases

    Multiscale Low-Frequency Memory Network for Improved Feature Extraction in Convolutional Neural Networks

    Full text link
    Deep learning and Convolutional Neural Networks (CNNs) have driven major transformations in diverse research areas. However, their limitations in handling low-frequency information present obstacles in certain tasks like interpreting global structures or managing smooth transition images. Despite the promising performance of transformer structures in numerous tasks, their intricate optimization complexities highlight the persistent need for refined CNN enhancements using limited resources. Responding to these complexities, we introduce a novel framework, the Multiscale Low-Frequency Memory (MLFM) Network, with the goal to harness the full potential of CNNs while keeping their complexity unchanged. The MLFM efficiently preserves low-frequency information, enhancing performance in targeted computer vision tasks. Central to our MLFM is the Low-Frequency Memory Unit (LFMU), which stores various low-frequency data and forms a parallel channel to the core network. A key advantage of MLFM is its seamless compatibility with various prevalent networks, requiring no alterations to their original core structure. Testing on ImageNet demonstrated substantial accuracy improvements in multiple 2D CNNs, including ResNet, MobileNet, EfficientNet, and ConvNeXt. Furthermore, we showcase MLFM's versatility beyond traditional image classification by successfully integrating it into image-to-image translation tasks, specifically in semantic segmentation networks like FCN and U-Net. In conclusion, our work signifies a pivotal stride in the journey of optimizing the efficacy and efficiency of CNNs with limited resources. This research builds upon the existing CNN foundations and paves the way for future advancements in computer vision. Our codes are available at https://github.com/AlphaWuSeu/ MLFM.Comment: 9 pages, 10 figures,6 tables. AAAI 2024 conferenc
    corecore