24,915 research outputs found
Fashion Conversation Data on Instagram
The fashion industry is establishing its presence on a number of
visual-centric social media like Instagram. This creates an interesting clash
as fashion brands that have traditionally practiced highly creative and
editorialized image marketing now have to engage with people on the platform
that epitomizes impromptu, realtime conversation. What kinds of fashion images
do brands and individuals share and what are the types of visual features that
attract likes and comments? In this research, we take both quantitative and
qualitative approaches to answer these questions. We analyze visual features of
fashion posts first via manual tagging and then via training on convolutional
neural networks. The classified images were examined across four types of
fashion brands: mega couture, small couture, designers, and high street. We
find that while product-only images make up the majority of fashion
conversation in terms of volume, body snaps and face images that portray
fashion items more naturally tend to receive a larger number of likes and
comments by the audience. Our findings bring insights into building an
automated tool for classifying or generating influential fashion information.
We make our novel dataset of {24,752} labeled images on fashion conversations,
containing visual and textual cues, available for the research community.Comment: 10 pages, 6 figures, This paper will be presented at ICWSM'1
Ultrahigh energy neutrino scattering: an update
We update our estimates of charged and neutral current neutrino total cross
sections on isoscalar nucleons at ultrahigh energies using a global (x, Q^2)
fit, motivated by the Froissart bound, to the F_2 (electron-proton) structure
function utilizing the most recent analysis of the complete ZEUS and H1 data
sets from HERA I. Using the large Q^2, small Bjorken-x limits of the "wee"
parton model, we connect the ultrahigh energy neutrino cross sections directly
to the large Q^2, small-x extrapolation of our new fit, which we assume
saturates the Froissart bound. We compare both to our previous work, which
utilized only the smaller ZEUS data set, as well as to recent results of a
calculation using the ZEUS-S based global perturbative QCD parton distributions
using the combined HERA I results as input. Our new results substantiate our
previous conclusions, again predicting significantly smaller cross sections
than those predicted by extrapolating pQCD calculations to neutrino energies
above 10^9 GeV.Comment: 8 pages, 1 figure, 3 table
Magnetic susceptibility of alkali-TCNQ salts and extended Hubbard models with bond order and charge density wave phases
The molar spin susceptibilities of Na-TCNQ, K-TCNQ and Rb-TCNQ(II)
are fit quantitatively to 450 K in terms of half-filled bands of three
one-dimensional Hubbard models with extended interactions using exact results
for finite systems. All three models have bond order wave (BOW) and charge
density wave (CDW) phases with boundary for nearest-neighbor
interaction and on-site repulsion . At high , all three salts have
regular stacks of anion radicals. The fits place Na and
K in the CDW phase and Rb(II) in the BOW phase with . The Na and
K salts have dimerized stacks at while Rb(II) has regular stacks at
100K. The analysis extends to dimerized stacks and to dimerization
fluctuations in Rb(II). The three models yield consistent values of ,
and transfer integrals for closely related stacks. Model
parameters based on are smaller than those from optical data that in
turn are considerably reduced by electronic polarization from quantum chemical
calculation of , and on adjacent ions. The
analysis shows that fully relaxed states have reduced model parameters compared
to optical or vibration spectra of dimerized or regular stacks.Comment: 9 pages and 5 figure
- …
