97,674 research outputs found

    Optimal simulation of three-qubit gates

    Full text link
    In this paper, we study the optimal simulation of three-qubit unitary by using two-qubit gates. First, we give a lower bound on the two-qubit gates cost of simulating a multi-qubit gate. Secondly, we completely characterize the two-qubit gate cost of simulating a three-qubit controlled controlled gate by generalizing our result on the cost of Toffoli gate. The function of controlled controlled gate is simply a three-qubit controlled unitary gate and can be intuitively explained as follows: the gate will output the states of the two control qubit directly, and apply the given one-qubit unitary uu on the target qubit only if both the states of the control are 1\ket{1}. Previously, it is only known that five two-qubit gates is sufficient for implementing such a gate [Sleator and Weinfurter, Phys. Rev. Lett. 74, 4087 (1995)]. Our result shows that if the determinant of uu is 1, four two-qubit gates is achievable optimal. Otherwise, five is optimal. Thirdly, we show that five two-qubit gates are necessary and sufficient for implementing the Fredkin gate(the controlled swap gate), which settles the open problem introduced in [Smolin and DiVincenzo, Phys. Rev. A, 53, 2855 (1996)]. The Fredkin gate is one of the most important quantum logic gates because it is universal alone for classical reversible computation, and thus with little help, universal for quantum computation. Before our work, a five two-qubit gates decomposition of the Fredkin gate was already known, and numerical evidence of showing five is optimal is found.Comment: 16 Pages, comments welcom

    Reachability and Termination Analysis of Concurrent Quantum Programs

    Full text link
    We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli's probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.Comment: Accepted by Concur'12. Comments are welcom

    Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs

    Full text link
    We extract a novel quantum programming paradigm - superposition of programs - from the design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms. The generality of this paradigm is guaranteed by the universality of quantum walks as a computational model. A new quantum programming language QGCL is then proposed to support the paradigm of superposition of programs. This language can be seen as a quantum extension of Dijkstra's GCL (Guarded Command Language). Surprisingly, alternation in GCL splits into two different notions in the quantum setting: classical alternation (of quantum programs) and quantum alternation, with the latter being introduced in QGCL for the first time. Quantum alternation is the key program construct for realizing the paradigm of superposition of programs. The denotational semantics of QGCL are defined by introducing a new mathematical tool called the guarded composition of operator-valued functions. Then the weakest precondition semantics of QGCL can straightforwardly derived. Another very useful program construct in realizing the quantum programming paradigm of superposition of programs, called quantum choice, can be easily defined in terms of quantum alternation. The relation between quantum choices and probabilistic choices is clarified through defining the notion of local variables. We derive a family of algebraic laws for QGCL programs that can be used in program verification, transformations and compilation. The expressive power of QGCL is illustrated by several examples where various variants and generalizations of quantum walks are conveniently expressed using quantum alternation and quantum choice. We believe that quantum programming with quantum alternation and choice will play an important role in further exploiting the power of quantum computing.Comment: arXiv admin note: substantial text overlap with arXiv:1209.437
    corecore