73,760 research outputs found

    Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes

    Get PDF
    The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM) is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW) wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM) using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST) shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D). Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one

    Making the decoy-state measurement-device-independent quantum key distribution practically useful

    Full text link
    The relatively low key rate seems to be the major barrier to its practical use for the decoy state measurement device independent quantum key distribution (MDIQKD). We present a 4-intensity protocol for the decoy-state MDIQKD that hugely raises the key rate, especially in the case the total data size is not large. Also, calculation shows that our method makes it possible for secure private communication with {\em fresh} keys generated from MDIQKD with a delay time of only a few seconds.Comment: Typing errors corrected, presentation improve

    Three-intensity decoy state method for device independent quantum key distribution

    Full text link
    We study the measurement device independent quantum key distribution (MDI-QKD) in practice with limited resource, when there are only 3 different states in implementing the decoy-state method. We present a more tightened explicit formula to estimate the lower bound of the yield of two-single-photon pulses. Moreover, we show that the bounding of this yield and phase flip error of single photon pulse pairs can be further improved by using other constraints which can be solved by a simple and explicit program. Results of numerical simulation for key rates with both the improved explicit formula and the program are presented. It shows that the results obtained with our methods here can significantly improve the key rate and secure distance of MDI QKD with only three intensities

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    On the Relation of Hard X-ray Peak Flux and Outburst Waiting Time in the Black Hole Transient GX 339-4

    Full text link
    Aims. In this work we re-investigated the empirical relation between the hard X-ray peak flux and the outburst waiting time found previously in the black hole transient GX 339-4. We tested the relation using the observed hard X-ray peak flux of the 2007 outburst of GX 339-4, clarified issues about faint flares, and estimated the lower limit of hard X-ray peak flux for the next outburst. Methods. We included Swift/BAT data obtained in the past four years. Together with the CGRO/BATSE and RXTE/HEXTE light curves, the observations used in this work cover a period of 18 years. Results. The observation of the 2007 outburst confirms the empirical relation discovered before. This strengthens the apparent link between the mass in the accretion disk and the peak luminosity of the brightest hard state that the black hole transient can reach. We also show that faint flares with peak fluxes smaller than about 0.12 crab do not affect the empirical relation. We predict that the hard X-ray peak flux of the next outburst should be larger than 0.65 crab, which will make it at least the second brightest in the hard X-ray since 1991.Comment: 4 pages, 3 figures, accepted by A&
    corecore