24,847 research outputs found

    A Photonic Crystal Slab Laplace Differentiator

    Full text link
    We introduce an implementation of a Laplace differentiator based on a photonic crystal slab that operates at transmission mode. We show that the Laplace differentiator can be implemented provided that the guided resonances near the Γ\Gamma point exhibit an isotropic band structure. Such a device may facilitate nanophotonics-based optical analog computing for image processing.Comment: Primary text 6 pages, 5 figures; Supplementary material 5 pages, 3 figure

    Chromatin Laser Imaging Reveals Abnormal Nuclear Changes for Early Cancer Detection

    Full text link
    We developed and applied rapid scanning laser-emission microscopy to detect abnormal changes in cell nuclei for early diagnosis of cancer and cancer precursors. Regulation of chromatins is essential for genetic development and normal cell functions, while abnormal nuclear changes may lead to many diseases, in particular, cancer. The capability to detect abnormal changes in apparently normal tissues at a stage earlier than tumor development is critical for cancer prevention. Here we report using LEM to analyze colonic tissues from mice at-risk for colon cancer by detecting prepolyp nuclear abnormality. By imaging the lasing emissions from chromatins, we discovered that, despite the absence of observable lesions, polyps, or tumors under stereoscope, high-fat mice exhibited significantly lower lasing thresholds than low-fat mice. The low lasing threshold is, in fact, very similar to that of adenomas and is caused by abnormal cell proliferation and chromatin deregulation that can potentially lead to cancer. Our findings suggest that conventional methods, such as colonoscopy, may be insufficient to reveal hidden or early tumors under development. We envision that this work will provide new insights into LEM for early tumor detection in clinical diagnosis and fundamental biological and biomedical research of chromatin changes at the biomolecular level of cancer development

    Internal shock model for the X-ray flares of Swift J1644+57

    Get PDF
    Swift J1644+57 is an unusual transient event, likely powered by the tidal disruption of a star by a massive black hole. There are multiple short timescales X-ray flares were seen over a span of several days. We propose that these flares could be produced by internal shocks. In the internal shock model, the forward and reverse shocks are produced by collisions between relativistic shells ejected from central engine. The synchrotron emission from the forward and reverse shocks could dominate at two quite different energy bands under some conditions, the relativistic reverse shock dominates the X-ray emission and the Newtonian forward shock dominates the infrared and optical emission. We show that the spectral energy distribution of Swift J1644+57 could be explained by internal shock model.Comment: 6 pages, 3 figures, accepted for publication in MNRA

    Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery

    Get PDF
    Entropy as an estimate of complexity of the electroencephalogram is an effective parameter for monitoring the depth of anesthesia (DOA) during surgery. Multiscale entropy (MSE) is useful to evaluate the complexity of signals over different time scales. However, the limitation of the length of processed signal is a problem due to observing the variation of sample entropy (SE) on different scales. In this study, the adaptive resampling procedure is employed to replace the process of coarse-graining in MSE. According to the analysis of various signals and practical EEG signals, it is feasible to calculate the SE from the adaptive resampled signals, and it has the highly similar results with the original MSE at small scales. The distribution of the MSE of EEG during the whole surgery based on adaptive resampling process is able to show the detailed variation of SE in small scales and complexity of EEG, which could help anesthesiologists evaluate the status of patients.The Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan which is sponsored by National Science Council (Grant Number: NSC 100-2911-I-008-001). Also, it was supported by Chung-Shan Institute of Science & Technology in Taiwan (Grant Numbers: CSIST-095-V101 and CSIST-095-V102). Furthermore, it was supported by the National Science Foundation of China (No.50935005)
    corecore