3,097 research outputs found
Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.
IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations
Power allocation for cache-aided small-cell networks with limited backhaul
Cache-aided small-cell network is becoming an effective method to improve the transmission rate and reduce the backhaul load. Due to the limited capacity of backhaul, less power should be allocated to users whose requested contents do not exist in the local caches to maximize the performance of caching. In this paper, power allocation is considered to improve the performance of cache-aided small-cell networks with limited backhaul, where interference alignment (IA) is utilized to manage interferences among users. Specifically, three power allocation algorithms are proposed. First, we come up with a power allocation algorithm to maximize the sum transmission rate of the network, considering the limitation of backhaul. Second, in order to have more users meet their rate requirements, a power allocation algorithm to minimizing the average outage probability is also proposed. In addition, in order to further improve the users’ experience, a power allocation algorithm that maximizes the average satisfaction of all the users is also designed. Simulation results are provided to show the effectiveness of the three proposed power allocation algorithms for cache-aided small-cell networks with limited backhaul
Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene
Theoretical research has predicted that ripples of graphene generates
effective gauge field on its low energy electronic structure and could lead to
zero-energy flat bands, which are the analog of Landau levels in real magnetic
fields. Here we demonstrate, using a combination of scanning tunneling
microscopy and tight-binding approximation, that the zero-energy Landau levels
with vanishing Fermi velocities will form when the effective pseudomagnetic
flux per ripple is larger than the flux quantum. Our analysis indicates that
the effective gauge field of the ripples results in zero-energy flat bands in
one direction but not in another. The Fermi velocities in the perpendicular
direction of the ripples are not renormalized at all. The condition to generate
the ripples is also discussed according to classical thin-film elasticity
theory.Comment: 4 figures, Phys. Rev.
Highly efficient coherent optical memory based on electromagnetically induced transparency
Quantum memory is an important component in the long-distance quantum
communication system based on the quantum repeater protocol. To outperform the
direct transmission of photons with quantum repeaters, it is crucial to develop
quantum memories with high fidelity, high efficiency and a long storage time.
Here, we achieve a storage efficiency of 92.0(1.5)\% for a coherent optical
memory based on the electromagnetically induced transparency (EIT) scheme in
optically dense cold atomic media. We also obtain a useful time-bandwidth
product of 1200, considering only storage where the retrieval efficiency
remains above 50\%. Both are the best record to date in all kinds of the
schemes for the realization of optical memory. Our work significantly advances
the pursuit of a high-performance optical memory and should have important
applications in quantum information science.Comment: 5 pages, 5 figures, supplementary materials: 12 pages, 4 figure
Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients
Objectives: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor,
is a pro-inflammatory cytokine whose serum level is increased in various cancers. In this study, we investigated
whether plasma visfatin levels were altered in patients with oral squamous cell carcinoma (OSCC). The relation
ship between plasma visfatin levels and the pretreatment hematologic profile was also explored.
Study
Design: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub-
D
esign: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub-
esign: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub
jects. A total of 51 patients with OSCC and 57 age- and body mass index (BMI)-matched control subjects were
studied. All study subjects were male.
Results: Plasma visfatin was found to be elevated in patients with OSCC (7.0 ± 4.5 vs. 4.8 ± 1.9 ng/ml, p = 0.002).
Multiple logistic regression analysis revealed visfatin as an independent association factor for OSCC, even after
full adjustment of known biomarkers. Visfatin level was significantly correlated with white blood cell (WBC)
count, neutrophil count, and hematocrit (all p < 0.05). In addition, WBC count, neutrophil count, and visfatin
gradually increased with stage progression, and hematocrit gradually decreased with stage progression (all p <
0.05).
Conclusion: Increased plasma visfatin levels were associated with OSCC, independent of risk factors, and were cor
related with inflammatory biomarkers. These data suggest that visfatin may act through inflammatory reactions to
play an important role in the pathogenesis of OSC
- …
