3,681 research outputs found

    Probing the Electronic States in Black Phosphorus Vertical Heterostructures

    Full text link
    Atomically thin black phosphorus (BP) is a promising two-dimensional material for fabricating electronic and optoelectronic nano-devices with high mobility and tunable bandgap structures. However, the charge-carrier mobility in few-layer phosphorene (monolayer BP) is mainly limited by the presence of impurity and disorders. In this study, we demonstrate that vertical BP heterostructure devices offer great advantages in probing the electron states of monolayer and few-layer phosphorene at temperatures down to 2 K through capacitance spectroscopy. Electronic states in the conduction and valence bands of phosphorene are accessible over a wide range of temperature and frequency. Exponential band tails have been determined to be related to disorders. Unusual phenomena such as the large temperature-dependence of the electron state population in few-layer phosphorene have been observed and systematically studied. By combining the first-principles calculation, we identified that the thermal excitation of charge trap states and oxidation-induced defect states were the main reasons for this large temperature dependence of the electron state population and degradation of the on-off ratio in phosphorene field-effect transistors.Comment: 15 pages, 7 figures, 2D Materials, Volume 3, Number 1(2016

    Efficient derivation of dopaminergic neurons from SOX1(-) floor plate cells under defined culture conditions.

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX(-) floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages. METHODS: In this study, we attempted to utilize a Shh-free approach in deriving SOX1(-) FP cells from hESCs in vitro. Neuroectoderm conversion from hESCs was achieved with dual inhibition of the BMP4 (LDN193189) and TGF-β signaling pathways (SB431542) for 24 h under defined culture conditions. RESULTS: Following a further 5 days of treatment with LDN193189 or LDN193189 + SB431542, SOX1(-) FP cells constituted 70-80 % of the entire cell population. Upon treatment with Shh and FGF8, the SOX1(-) FP cells were efficiently converted to functional Nurr1(+) and TH(+) dopaminergic cells (patterning), which constituted more than 98 % of the entire cell population. However, when the same growth factors were applied to SOX1(+) cells, only less than 4 % of the cells became Nurr1(+), indicating that patterning was effective only if SOX1 expression was down-regulated. After transplanting the Nurr1(+) and TH(+) cells into a hemiparkinsonian rat model, significant improvements were observed in amphetamine induced ipslateral rotations, apomorphine induced contra-lateral rotations and Rota rod motor tests over a duration of 8 weeks. CONCLUSIONS: Our findings thus provide a convenient approach to FP development and functional dopaminergic neuron derivation.published_or_final_versio

    Research on sound insulation characteristics of the friction stir welding magnesium alloy sheet

    Get PDF
    The friction stir welding (FSW) on magnesium alloy has already been widely used. Therefore, the research on its sound insulation characteristics appears particularly significant, based on ALE (Arbitrary Lagrangian Eulerian) adaptive meshing technique of ABAQUS/Explicit, the FSW procedure was numerically simulated and the modal solution, just a little different from the experimental result, was finally obtained, which has verified the validity of the established model, and obtain the response result to be imported into professional acoustic software to calculate the sound insulation characteristics. Subsequently, the structure-acoustic coupling method was employed to calculate the noise reduction in FSW on magnesium alloy, and through comparison with the experimental result, this coupling method proved feasible to predict the sound insulation characteristics in FSW on magnesium alloy. Furthermore, the result has also revealed that FSW could increase the noise reduction at intermediate or low frequency, in addition, which was 2 dB higher on the frontal welding surface than the reverse one. Consequently, at the installation of magnesium alloy welding parts, the frontal or reverse surface shall be reasonably selected to face the noise source in accordance with the practical situation, so as to improve the sound insulation performance to a greater extent. To some extent, the research achieves the combination of welding and acoustic

    Manipulation of magnetic systems by quantized surface acoustic wave via piezomagnetic effect

    Full text link
    The quantized surface acoustic wave (SAW) in the piezoelectric medium has recently been studied, and is used to control electric dipoles of quantum systems via the electric field produced through piezoelectric effect. However, it is not easy and convenient to manipulate magnetic moments directly by the electric field. We here study a quantum theory of SAW in the piezomagnetic medium. We show that the intrinsic properties of the piezomagnetic medium enable the SAW in the piezomagnetic medium to directly interact with magnetic moments of quantum systems via magnetic field induced by piezomagnetic effect. By taking the strip SAW waveguide made of piezomagnetic medium as an example, we further study the coupling strengths between different magnetic quantum systems with magnetic moments and the quantized single-mode SAW in the waveguide. Based on this, we discuss the interaction between magnetic quantum systems mediated by the quantized multi-mode SAW in piezomagnetic waveguide. Our study provides a convenient way to directly control magnetic quantum systems by quantized SAW, and offers potential applications to on-chip information processing based on solid-state quantum systems via quantized acoustic wave.Comment: 16 pages, 10 figure

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    CoLLD: Contrastive Layer-to-layer Distillation for Compressing Multilingual Pre-trained Speech Encoders

    Full text link
    Large-scale self-supervised pre-trained speech encoders outperform conventional approaches in speech recognition and translation tasks. Due to the high cost of developing these large models, building new encoders for new tasks and deploying them to on-device applications are infeasible. Prior studies propose model compression methods to address this issue, but those works focus on smaller models and less realistic tasks. Thus, we propose Contrastive Layer-to-layer Distillation (CoLLD), a novel knowledge distillation method to compress pre-trained speech encoders by leveraging masked prediction and contrastive learning to train student models to copy the behavior of a large teacher model. CoLLD outperforms prior methods and closes the gap between small and large models on multilingual speech-to-text translation and recognition benchmarks.Comment: Submitted to ICASSP 202

    Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuo, Y.-N., Lo, M.-H., Liang, Y.-C., Tseng, Y.-H., & Hsu, C.-W. Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events. Geophysical Research Letters, 48(18), (2021): e2021GL094104, https://doi.org/10.1029/2021GL094104.Interannual variations in global mean sea level (GMSL) closely correlate with the evolution of El Niño-Southern Oscillation. However, GMSL differences occur in extreme El Niños; for example, in the 2015–2016 and 1997–1998 El Niños, the peak GMSL during the mature stage of the former (9.00 mm) is almost 2.5 times higher than the latter (3.72 mm). Analyses from satellite and reanalysis data sets show that the disparity in GMSL is primarily due to barystatic (ocean mass) changes. We find that the 2015–2016 event developed not purely as an Eastern Pacific El Niño event but with Central Pacific (CP) El Niño forcing. CP El Niños contribute to a stronger negative anomaly of global terrestrial water storage and subsequent higher barystatic heights. Our results suggest that the mechanism of hydrology-related interannual variations of GMSL should be further emphasized, as more CP El Niño events are projected to occur.This study was supported by a grant of MOST 106-2111-M-002-010-MY4 to National Taiwan University
    corecore