8,095 research outputs found

    Patellar Tendon Morphology in Trans-tibial Amputees Utilizing a Prosthesis with a Patellar-tendon- Bearing Feature

    Get PDF
    A patellar-tendon-bearing (PTB) bar is a common design feature used in the socket of trans-tibial prostheses to place load on the pressure-tolerant tissue. As the patellar tendon in the residual limb is subjected to the perpendicular compressive force not commonly experienced in normal tendons, it is possible for tendon degeneration to occur over time. The purpose of this study was to compare patellar tendon morphology and neovascularity between the residual and intact limbs in trans-tibial amputees and healthy controls. Fifteen unilateral trans-tibial amputees who utilized a prosthesis with a PTB feature and 15 age- and sex- matched controls participated. Sonography was performed at the proximal, mid-, and distal portions of each patellar tendon. One-way ANOVAs were conducted to compare thickness and collagen fber organization and a chi-square analysis was used to compare the presence of neovascularity between the three tendon groups. Compared to healthy controls, both tendons in the amputees exhibited increased thickness at the mid- and distal portions and a higher degree of collagen fber disorganization. Furthermore, neovascularity was more common in the tendon of the residual limb. Our results suggest that the use of a prosthesis with a PTB feature contributes to morphological changes in bilateral patellar tendons

    Non-saturating large magnetoresistance in semimetals

    Full text link
    The rapidly expanding class of quantum materials known as {\emph{topological semimetals}} (TSM) display unique transport properties, including a striking dependence of resistivity on applied magnetic field, that are of great interest for both scientific and technological reasons. However, experimental signatures that can identify or discern the dominant mechanism and connect to available theories are scarce. Here we present the magnetic susceptibility (χ\chi), the tangent of the Hall angle (tanθH\tan\theta_H) along with magnetoresistance in four different non-magnetic semimetals with high mobilities, NbP, TaP, NbSb2_2 and TaSb2_2, all of which exhibit non-saturating large MR. We find that the distinctly different temperature dependences, χ(T)\chi(T) and the values of tanθH\tan\theta_H in phosphides and antimonates serve as empirical criteria to sort the MR from different origins: NbP and TaP being uncompensated semimetals with linear dispersion, in which the non-saturating magnetoresistance arises due to guiding center motion, while NbSb2_2 and TaSb2_2 being {\it compensated} semimetals, with a magnetoresistance emerging from nearly perfect charge compensation of two quadratic bands. Our results illustrate how a combination of magnetotransport and susceptibility measurements may be used to categorize the increasingly ubiquitous non-saturating large magnetoresistance in TSMs.Comment: Accepted for publication at Proc. Natl. Acad. Sci., minor revisions, 6 figure

    Effective-stress finite element analysis of spudcan penetration with lattice leg in clay

    Get PDF
    10.1063/1.4826009AIP Conference Proceedings15582337-234

    Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure

    Get PDF
    Chronic kidney disease (CKD) is a major health problem worldwide. Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are highly protein-bound nephro-cardiovascular toxins, which are not efficiently removed through hemodialysis. The renal excretions of IS and PCS were mediated by organic anion transporters (OATs) such as OAT1 and OAT3. Green tea (GT) is a popular beverage containing plenty of catechins. Previous pharmacokinetic studies of teas have shown that the major molecules present in the bloodstream are the glucuronides/sulfates of tea catechins, which are putative substrates of OATs. Here we demonstrated that GT ingestion significantly elevated the systemic exposures of endogenous IS and PCS in rats with chronic renal failure (CRF). More importantly, GT also significantly increased the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) in CRF rats. Mechanism studies indicated that the serum metabolites of GT (GTM) inhibited the uptake transporting functions of OAT1 and OAT3. In conclusion, GT inhibited the elimination of nephro-cardiovascular toxins such as IS and PCS, and deteriorated the renal function in CRF rats

    The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy.

    Get PDF
    EGFR amplification in cells having double minute chromosomes (DM) is commonly found in glioblastoma multiforme (GBM); however, how much it contributes to the current failure to treat GBM successfully is unknown. We studied two syngeneic primary cultures derived from a GBM with and without cells carrying DM, for their differential molecular and metabolic profiles, in vivo growth patterns, and responses to irradiation (IR). Each cell line has a distinct molecular profile consistent with an invasive "go" (with DM) or angiogenic "grow" phenotype (without DM) demonstrated in vitro and in intracranial xenograft models. Cells with DM were relatively radio-resistant and used higher glycolytic respiration and lower oxidative phosphorylation in comparison to cells without them. The DM-containing cell was able to restore tumor heterogeneity by mis-segregation of the DM-chromosomes, giving rise to cell subpopulations without them. As a response to IR, DM-containing cells switched their respiration from glycolic metabolism to oxidative phosphorylation and shifted molecular profiles towards that of cells without DM. Irradiated cells with DM showed the capacity to alter their extracellular microenvironment to not only promote invasiveness of the surrounding cells, regardless of DM status, but also to create a pro-angiogenic tumor microenvironment. IR of cells without DM was found primarily to increase extracellular MMP2 activity. Overall, our data suggest that the DM-containing cells of GBM are responsible for tumor recurrence due to their high invasiveness and radio-resistance and the mis-segregation of their DM chromosomes, to give rise to fast-growing cells lacking DM chromosomes
    corecore