3,544 research outputs found

    Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding

    Full text link
    In this paper, we perform a complete analysis of the kinetic behavior of the general modifier mechanism of Botts and Morales in both equilibrium steady states and non-equilibrium steady states (NESS). Enlightened by the non-equilibrium theory of Markov chains, we introduce the net flux into discussion and acquire an expression of product rate in NESS, which has clear biophysical significance. Up till now, it is a general belief that being an activator or an inhibitor is an intrinsic property of the modifier. However, we reveal that this traditional point of view is based on the equilibrium assumption. A modifier may no longer be an overall activator or inhibitor when the reaction system is not in equilibrium. Based on the regulation of enzyme activity by the modifier concentration, we classify the kinetic behavior of the modifier into three categories, which are named hyperbolic behavior, bell-shaped behavior, and switching behavior, respectively. We show that the switching phenomenon, in which a modifier may convert between an activator and an inhibitor when the modifier concentration varies, occurs only in NESS. Effects of drugs on the Pgp ATPase activity, where drugs may convert from activators to inhibitors with the increase of the drug concentration, are taken as a typical example to demonstrate the occurrence of the switching phenomenon.Comment: 19 pages, 10 figure

    Probing the physics of newly born magnetars through observation of superluminous supernovae

    Full text link
    The central engines of some superluminous supernovae (SLSNe) are generally suggested to be newly born fast rotating magnetars, which spin down mainly through magnetic dipole radiation and gravitational wave emission. We calculate the magnetar-powered SLSNe light curves (LCs) with the tilt angle evolution of newly born magnetars involved. We show that, depending on the internal toroidal magnetic fields Bˉt{\bar B}_{\rm t}, the initial spin periods PiP_{\rm i}, and the radii RDUR_{\rm DU} of direct Urca (DU) cores of newly born magnetars, as well as the critical temperature TcT_{\rm c} for 3P2^3P_2 neutron superfluidity, bumps could appear in the SLSNe LCs after the maximum lights when the tilt angles grow to π/2\pi/2. The value of TcT_{\rm c} determines the arising time and the relative amplitude of a bump. The quantity RDUR_{\rm DU} can affect the arising time and the luminosity of a bump, as well as the peak luminosity of a LC. Moreover, it is interesting that a stronger Bˉt{\bar B}_{\rm t} will lead to both a brighter peak and a brighter bump in a LC. While keeping other quantities unchanged, the bump in the LC disappears for the magnetar with smaller PiP_{\rm i}. We suggest that, once the SLSNe LCs with such kinds of bumps are observed, by fitting these LCs with our model, not only BdB_{\rm d} and PiP_{\rm i} of newly born magnetars but also the crucial physical quantities Bˉt{\bar B}_{\rm t}, RDUR_{\rm DU}, and TcT_{\rm c} could be determined. Nonobservation of SLSNe LCs with such kinds of bumps hitherto may already put some (\textit{though very rough}) constraints on Bˉt{\bar B}_{\rm t}, PiP_{\rm i}, RDUR_{\rm DU}, and TcT_{\rm c}. Therefore, observation of SLSNe LCs may provide a new approach to probe the physics of newly born magnetars.Comment: 9 pages, 4 figures, to appear in PR

    Chronic ingestion of alcohol modulates expression of ubiquitin editing enzyme A20 in lung macrophages

    Get PDF
    BACKGROUND: Alcohol abuse is involved in the pathogenesis of multiple organ disorders; the underlying mechanism is incompletely understood. The ubiquitin editing enzyme A20 is involved in regulating activities in the cell. Suppression of A20 is suggested as one factor in the initiation of inflammation. This study investigates the mechanism by which chronic alcohol consumption modulates the levels of ubiquitin editing enzyme A20 in macrophages and further contributes to induce endothelial barrier dysfunction in the lung. METHODS: Mice were gavage-fed with 40% alcohol daily for 0-3 weeks. Airway macrophages were collected by lung lavage. Expression of ubiquitin editing enzyme A20 in isolated macrophages was assessed at both mRNA and protein levels. The endothelial barrier function of the lung was evaluated by the Evans blue method. RESULTS: Mice treated with alcohol for 3 weeks showed an increase in cell infiltration in the lung in response to exposure to peptidoglycan; over 80% of the infiltrated cells were macrophages. Furthermore, we observed that A20 level was suppressed in macrophages of mice treated with alcohol; the levels of tumor necrosis factor, interleukin-6 and nuclear factor kappa B in macrophage were increased. In addition, the endothelial barrier function of the lung was compromised, showing excessive infiltration of Evans blue in the lung indicating lung edema. Pretreatment with synthesized A20 inhibited alcohol-induced lung endothelial barrier dysfunction. CONCLUSIONS: We conclude that chronic alcohol ingestion disturbs the endothelial barrier function in the lung by modulating macrophage properties. Increase in A20 in the cell may have potential for the treatment of inflammatory disorders

    Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection

    Get PDF
    Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants

    Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene

    Get PDF
    Acetylene (HCCH) has a long history as a mechanism-based enzyme inhibitor and is considered an active-site probe of the particulate methane monooxygenase (pMMO). Here, we report how HCCH inactivates pMMO in Methylococcus capsulatus (Bath) by using high-resolution mass spectrometry and computational simulation. High-resolution MALDI-TOF MS of intact pMMO complexes has allowed us to confirm that the enzyme oxidizes HCCH to the ketene (C_2H_2O) intermediate, which then forms an acetylation adduct with the transmembrane PmoC subunit. LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the protein subunit identifies K196 of PmoC as the site of acetylation. No evidence is obtained for chemical modification of the PmoA or PmoB subunit. The inactivation of pMMO by a single adduct in the transmembrane PmoC domain is intriguing given the complexity of the structural fold of this large membrane-protein complex as well as the complicated roles played by the various metal cofactors in the enzyme catalysis. Computational studies suggest that the entry of hydrophobic substrates to, and migration of products from, the catalytic site of pMMO is controlled tightly within the transmembrane domain. Support of these conclusions is provided by parallel experiments with two related alkynes: propyne (CH3CCH) and trifluoropropyne (CF_3CCH). Finally, we discuss the implication of these findings to the location of the catalytic site in pMMO

    3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    Get PDF
    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1
    corecore