11,799 research outputs found

    Mass and Mean Velocity Dispersion Relations for Supermassive Black Holes in Galactic Bulges

    Full text link
    Growing evidence indicate supermassive black holes (SMBHs) in the mass range of MBHM_{\rm BH}1061010M\sim 10^6-10^{10}M_{\odot} lurking in central bulges of many galaxies. Extensive observations reveal fairly tight power laws of MBHM_{\rm BH} versus the mean stellar velocity dispersion σ\sigma of the host bulge. The dynamic evolution of a bulge and the formation of a central SMBH should be physically linked by various observational clues. In this contribution, we reproduce the empirical MBHσM_{\rm BH}-\sigma power laws based on a self-similar general polytropic quasi-static bulge evolution and a sensible criterion of forming a SMBH surrounding the central density singularity of a general singular polytropic sphere (SPS) \cite{loujiang2008}. Other properties of host bulges and central SMBHs are also examined. Based on our model, we discuss the intrinsic scatter of the MBHσM_{\rm BH}-\sigma relation and a scenario for the evolution of SMBHs in different host bulges.Comment: 8 pages, 2 figures, accepted for publication in the Proceedings of Science for VII Microquasar Workshop: Microquasars and Beyon

    QCD radiative correction to color-octet J/ψJ/\psi inclusive production at B Factories

    Full text link
    In nonrelativistic Quantum Chromodynamics (NRQCD), we study the next-to-leading order (NLO) QCD radiative correction to the color-octet J/ψJ/\psi inclusive production at B Factories. Compared with the leading-order (LO) result, the NLO QCD corrections are found to enhance the short-distance coefficients in the color-octet J/ψJ/\psi production e+eccˉ(3P0(8)or3P0(8))g e^+ e^-\to c \bar c (^3P_0^{(8)} {\rm or} ^3P_0^{(8)})g by a factor of about 1.9. Moreover, the peak at the endpoint in the J/ψJ/\psi energy distribution predicted at LO can be smeared by the NLO corrections, but the major color-octet contribution still comes from the large energy region of J/ψJ/\psi. By fitting the latest data of σ(e+eJ/ψ+Xnonccˉ)\sigma(e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}) observed by Belle, we find that the values of color-octet matrix elements are much smaller than expected earlier by using the naive velocity scaling rules or extracted from fitting experimental data with LO calculations. As the most stringent constraint by setting the color-singlet contribution to be zero in e+eJ/ψ+Xnonccˉe^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}, we get an upper limit of the color-octet matrix element, +4.0<0OJ/ψ[3P0(8)]0>/mc2<(2.0±0.6)×102GeV3 + 4.0 <0| {\cal O}^{J/\psi} [{}^3P_0^{(8)}]|0>/m_c^2 <(2.0 \pm 0.6)\times 10^{-2} {\rm GeV}^3 at NLO in αs\alpha_s.Comment: 18 pages, 8 figure

    Quantum algorithm for association rules mining

    Full text link
    Association rules mining (ARM) is one of the most important problems in knowledge discovery and data mining. Given a transaction database that has a large number of transactions and items, the task of ARM is to acquire consumption habits of customers by discovering the relationships between itemsets (sets of items). In this paper, we address ARM in the quantum settings and propose a quantum algorithm for the key part of ARM, finding out frequent itemsets from the candidate itemsets and acquiring their supports. Specifically, for the case in which there are Mf(k)M_f^{(k)} frequent kk-itemsets in the Mc(k)M_c^{(k)} candidate kk-itemsets (Mf(k)Mc(k)M_f^{(k)} \leq M_c^{(k)}), our algorithm can efficiently mine these frequent kk-itemsets and estimate their supports by using parallel amplitude estimation and amplitude amplification with complexity O(kMc(k)Mf(k)ϵ)\mathcal{O}(\frac{k\sqrt{M_c^{(k)}M_f^{(k)}}}{\epsilon}), where ϵ\epsilon is the error for estimating the supports. Compared with the classical counterpart, classical sampling-based algorithm, whose complexity is O(kMc(k)ϵ2)\mathcal{O}(\frac{kM_c^{(k)}}{\epsilon^2}), our quantum algorithm quadratically improves the dependence on both ϵ\epsilon and Mc(k)M_c^{(k)} in the best case when Mf(k)Mc(k)M_f^{(k)}\ll M_c^{(k)} and on ϵ\epsilon alone in the worst case when Mf(k)Mc(k)M_f^{(k)}\approx M_c^{(k)}.Comment: 8 page

    Engineering entangled microwave photon states via multiphoton interactions between two cavity fields and a superconducting qubit

    Full text link
    It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave states when the interactions between superconducting qubits and microwave fields are in the ultrastrong regime

    A General Analysis of Wtb anomalous Couplings

    Full text link
    We investigate new physics effects on the Wtb effective couplings in a model-independent manner. The new physics effects are summarized as four independent couplings f1Lf_1^L, f1Rf_1^R, f2Lf_2^L and f2Rf_2^R. Using single-top-quark productions and W-helicity fraction measurements at the LHC and Tevatron, we perform a global fit to impose constraints on top quark effective couplings. We introduce a set of parameters x0x_0, xmx_m, xpx_p and x5x_5 to study the correlations among Wtb effective couplings. We show that (i) improving the measurements of σt\sigma_t and σtW\sigma_{tW} is important in constraining the correlation of (f1R,f2R)(f_1^R,f_2^R) and (f2L,f2R)(f_2^L,f_2^R); (ii) f1Lf_1^L and f2Rf_2^R are anti-correlated, which is sensitive to all the experiments; (iii) f1Rf_1^R and f2Lf_2^L are also anti-correlated, which is sensitive to the W-helicity measurements; (iv) the correlation between f2Lf_2^L and f2Rf_2^R is sensitive to the precision of σt\sigma_t, σtW\sigma_{tW} and F0F_0 measurements. The effective Wtb couplings are studied in three kinds of new physics models: SU(2)1×SU(2)2×U(1)XSU(2)_1 \times SU(2)_2 \times U(1)_X models, vector-like quark models and Littlest Higgs model with and without T-parity. The Wtb couplings in the left-right model and the un-unified model are sensitive to the ratio of gauge couplings when the new heavy gauge boson's mass (MWM_{W'}) is less than several hundred GeV, but the constraint is loose if MW>1M_{W'}>1 TeV. The Wtb couplings in vector-like quark models and the Littlest Higgs models are sensitive to the mixing angles of new heavy particles and SM particles. We also include the constraints of the oblique T-parameter and Zbb couplings which impose much tighter constraints on the mixing angles. We show that the Wtb coupling constraints become relevant if the precision of single top production cross section measurements could be reduced to 1\% relative to the SM predictions in future.Comment: Chin. Phys. C in pres

    Scheme for suppressing atom expansion induced contrast loss in atom interferometers

    Full text link
    The loss of contrast due to atom expansion induced non-perfect Raman pulse area in atom interferometers is investigated systematically. Based on the theoretical simulation, we find that the expansion of the atomic cloud results in a decrease of the {\pi} pulse fidelity and a change of the {\pi} pulse duration, which lead to a significant reduction in fringe contrast. We propose a mitigation strategy of increasing the intensities of the second and third Raman pulses. Simulation results show that the fringe contrast can be improved by 13.6% in a typical atom interferometer gravimeter using this intensity compensation strategy. We also evaluate the effects of this mitigation strategy in the case of a lower atomic cloud temperature and a larger Raman beam size under different Raman pulse time interval conditions. This mitigation strategy has potential applications in increasing the sensitivity of atom interferometer-based precision measuring, including precision measuring of the gravity, gravity gradient, rotation, and magnetic field gradient, as well as testing of the Einstein equivalence principle.Comment: 14 pages, 8 figure
    corecore