563 research outputs found
On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere
Impact of supernova explosion on the neutron star magnetosphere in a massive
binary system is considered. The supernova shock striking the NS magnetosphere
filled with plasma can lead to the formation of a magnetospheric tail with
significant magnetic energy. The magnetic field reconnection in the current
sheet formed can convert the magnetic energy stored in the tail into kinetic
energy of accelerated charged particles. Plasma instabilities excited by beams
of relativistic particles can lead to the formation of a short pulse of
coherent radio emission with parameters similar to those of the observed bright
extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres
Induced scattering of short radio pulses
Effect of the induced Compton and Raman scattering on short, bright radio
pulses is investigated. It is shown that when a single pulse propagates through
the scattering medium, the effective optical depth is determined by the
duration of the pulse but not by the scale of the medium. The induced
scattering could hinder propagation of the radio pulse only if close enough to
the source a dense enough plasma is presented. The induced scattering within
the relativistically moving source places lower limits on the Lorentz factor of
the source. The results are applied to the recently discovered short
extragalactic radio pulse.Comment: submitted to Ap
Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field
The energy of a displaced magnetic vortex in a cylindrical particle made of
isotropic ferromagnetic material (magnetic dot) is calculated taking into
account the magnetic dipolar and the exchange interactions. Under the
simplifying assumption of small dot thickness the closed-form expressions for
the dot energy is written in a non-perturbative way as a function of the
coordinate of the vortex center. Then, the process of losing the stability of
the vortex under the influence of the externally applied magnetic field is
considered. The field destabilizing the vortex as well as the field when the
vortex energy is equal to the energy of a uniformly magnetized state are
calculated and presented as a function of dot geometry. The results (containing
no adjustable parameters) are compared to the recent experiment and are in good
agreement.Comment: 4 pages, 2 figures, RevTe
- …
