289 research outputs found

    Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova 2006X in M100

    Get PDF
    We present extensive optical (UBVRI), near-infrared (JK) light curves and optical spectroscopy of the Type Ia supernova (SN) 2006X in the nearby galaxy NGC 4321 (M100). Our observations suggest that either SN 2006X has an intrinsically peculiar color evolution, or it is highly reddened [E(B - V)_{host} = 1.42+/-0.04 mag] with R_V = 1.48+/-0.06, much lower than the canonical value of 3.1 for the average Galactic dust. SN 2006X also has one of the highest expansion velocities ever published for a SN Ia. Compared with the other SNe Ia we analyzed, SN 2006X has a broader light curve in the U band, a more prominent bump/shoulder feature in the V and R bands, a more pronounced secondary maximum in the I and near-infrared bands, and a remarkably smaller late-time decline rate in the B band. The B - V color evolution shows an obvious deviation from the Lira-Phillips relation at 1 to 3 months after maximum brightness. At early times, optical spectra of SN 2006X displayed strong, high-velocity features of both intermediate-mass elements (Si, Ca, and S) and iron-peak elements, while at late times they showed a relatively blue continuum, consistent with the blue U-B and B-V colors at similar epochs. A light echo and/or the interaction of the SN ejecta and its circumstellar material may provide a plausible explanation for its late-time photometric and spectroscopic behavior. Using the Cepheid distance of M100, we derive a Hubble constant of 72.7+/-8.2 km s^{-1} Mpc^{-1}(statistical) from the normalized dereddened luminosity of SN 2006X. We briefly discuss whether abnormal dust is a universal signature for all SNe Ia, and whether the most rapidly expanding objects form a subclass with distinct photometric and spectroscopic properties.Comment: 48 pages, 20 figures and 11 tables. Accepted Version (ApJ, 2008, March issue

    SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion Classification Using 3D Multi-Phase Imaging

    Full text link
    Automated classification of liver lesions in multi-phase CT and MR scans is of clinical significance but challenging. This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework, specifically designed for liver lesion classification in 3D multi-phase CT and MR imaging with varying phase counts. The proposed SDR-Former utilizes a streamlined Siamese Neural Network (SNN) to process multi-phase imaging inputs, possessing robust feature representations while maintaining computational efficiency. The weight-sharing feature of the SNN is further enriched by a hybrid Dual-Resolution Transformer (DR-Former), comprising a 3D Convolutional Neural Network (CNN) and a tailored 3D Transformer for processing high- and low-resolution images, respectively. This hybrid sub-architecture excels in capturing detailed local features and understanding global contextual information, thereby, boosting the SNN's feature extraction capabilities. Additionally, a novel Adaptive Phase Selection Module (APSM) is introduced, promoting phase-specific intercommunication and dynamically adjusting each phase's influence on the diagnostic outcome. The proposed SDR-Former framework has been validated through comprehensive experiments on two clinical datasets: a three-phase CT dataset and an eight-phase MR dataset. The experimental results affirm the efficacy of the proposed framework. To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public. This pioneering dataset, being the first publicly available multi-phase MR dataset in this field, also underpins the MICCAI LLD-MMRI Challenge. The dataset is accessible at:https://bit.ly/3IyYlgN.Comment: 13 pages, 7 figure

    An improved optical length research on the physical boundary of particle-dispersed fuel

    Get PDF
    The Volumetric Homogenization Method (VHM) is one of the most commonly used methods for neutronics calculation in reactors or components. However, the use of VHM for the Double-Heterogeneous (DH) System may lead to a large deviation in reactivity calculation. The deviation of DH System using the VHM can be expressed by the theoretically modified optical length. When the theoretically modified optical length is less than 10−4, the deviation caused by the VHM will be less than 100 pcm. This paper points out that the existing theoretically modified optical length for some cases of DH systems is not accurate, and this method is only for pin cell. In this paper, by calculating a series of DH models and their corresponding VHM models, it is found that the water-uranium ratio and the shape of fuel region seriously affects the reactivity calculation deviation of particle-dispersed fuel, the original modified optical length does not take this into account, resulting in unacceptable errors. On this basis, the application of optical length to physical boundaries for DH system is further discussed and the shape correction factor is taken into consideration. Therefore, an improved optical length is proposed, which greatly expands the range of application of the physical boundary judgment methods for the double heterogeneity of dispersed particle fuel. The numerical results show that the accuracy of the improved optical length in defining the physical boundary of double heterogeneous system is higher than the theoretically modified optical length

    The EGFR tyrosine kinase inhibitors as second-line therapy for EGFR wild-type non-small-cell lung cancer: a real-world study in People's Republic of China

    Get PDF
    INTRODUCTION: Clinical evidence comparing chemotherapy and tyrosine kinase inhibitors (TKIs) as second-line therapy for epidermal growth factor receptor (EGFR) wild-type non-small-cell lung cancer (NSCLC) are conflicting. METHODS: We retrospectively reviewed stage IV EGFR wild-type NSCLC patients who relapsed on first-line chemotherapy at the Shanghai Chest Hospital to compare the efficacy of TKIs and chemotherapy as second-line therapy among different clinical subgroups. RESULTS: The progression-free survival (PFS) and overall survival for patients receiving chemotherapy as second-line therapy for NSCLC were longer than patients who received TKIs. The hazard ratios (HRs) were 0.40 (P<0.001) and 0.50 (P<0.001), respectively. Subgroup analyses showed that second-line TKI therapy resulted in inferior PFS among smokers (HR =0.24, P<0.001), males (HR =0.33, P<0.001), females (HR =0.54, P=0.004), and patients with adenocarcinoma (HR =0.48, P<0.001) and nonadenocarcinoma histology (HR =0.20, P<0.001). Among never-smokers, the PFS in cohorts receiving second-line chemotherapy or TKIs was not significantly different (HR =0.70, P=0.08). CONCLUSION: These results suggest that EGFR TKI therapy was inferior compared to chemotherapy in EGFR wild-type NSCLC patients who relapsed from first-line chemotherapy; however, among never-smokers, these two treatment strategies were comparable

    Alpha-Adducin Gly460Trp Polymorphism and Hypertension Risk: A Meta-Analysis of 22 Studies Including 14303 Cases and 15961 Controls

    Get PDF
    BACKGROUND: No clear consensus has been reached on the alpha-adducin polymorphism (Gly460Trp) and essential hypertension risk. We performed a meta-analysis in an effort to systematically summarize the possible association. METHODOLOGY/PRINCIPAL FINDINGS: Studies were identified by searching MEDLINE and EMBASE databases complemented with perusal of bibliographies of retrieved articles and correspondence with original authors. The fixed-effects model and the random-effects model were applied for dichotomous outcomes to combine the results of the individual studies. We selected 22 studies that met the inclusion criteria including a total of 14303 hypertensive patients and 15961 normotensive controls. Overall, the 460Trp allele showed no statistically significant association with hypertension risk compared to Gly460 allele (P = 0.69, OR = 1.02, 95% CI 0.94-1.10, P(heterogeneity)<0.0001) in all subjects. Meta-analysis under other genetic contrasts still did not reveal any significant association in all subjects, Caucasians, East Asians and others. The results were similar but heterogeneity did not persist when sensitivity analyses were limited to these studies. CONCLUSIONS/SIGNIFICANCE: Our meta-analysis failed to provide evidence for the genetic association of α-adducin gene Gly460Trp polymorphism with hypertension. Further studies investigating the effect of genetic networks, environmental factors, individual biological characteristics and their mutual interactions are needed to elucidate the possible mechanism for hypertension in humans

    Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    Get PDF
    INTRODUCTION: Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. METHODS: From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS) or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital. RESULTS: A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS) were available for survival analysis. The overall survival (OS) for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9) and 16.4 months (95% CI 8.8–24.1), respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08). Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2), compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46). Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. CONCLUSION: There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit

    Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach

    Get PDF
    BACKGROUND: Recent randomized controlled trials have challenged the concept that increased high density lipoprotein cholesterol (HDL-C) levels are associated with coronary artery disease (CAD) risk reduction. The causal role of HDL-C in the development of atherosclerosis remains unclear. To increase precision and to minimize residual confounding, we exploited the cholesteryl ester transfer protein (CETP)-TaqIB polymorphism as an instrument based on Mendelian randomization. METHODS: The Mendelian randomization analysis was performed by two steps. First, we conducted a meta-analysis of 47 studies, including 23,928 cases and 27,068 controls, to quantify the relationship between the TaqIB polymorphism and the CAD risk. Next, the association between the TaqIB polymorphism and HDL-C was assessed among 5,929 Caucasians. We further employed Mendelian randomization to evaluate the causal effect of HDL-C on CAD based on the findings from the meta-analysis. RESULTS: The overall comparison of the B2 allele with the B1 allele yielded a significant risk reduction of CAD (P < 0.0001; OR = 0.88; 95% CI: 0.84–0.92) with substantial between-study heterogeneity (I(2) = 55.2%; P(heterogeneity) <0.0001). The result was not materially changed after excluding the Hardy-Weinberg Equilibrium (HWE)-violation studies. Compared with B1B1 homozygotes, Caucasian carriers of the B2 allele had a 0.25 mmol/L increase in HDL-C level (95% CI: 0.20–0.31; P <0.0001; I(2) = 0; P(heterogeneity) =0.87). However, a 1 standard deviation (SD) elevation in HDL-C levels due to the TaqIB polymorphism, was marginal associated with CAD risk (OR =0.79; 95% CI: 0.54–1.03; P =0.08). CONCLUSIONS: Taken together, our results lend support to the concept that increased HDL-C cannot be translated into a reduction in CAD risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-014-0118-1) contains supplementary material, which is available to authorized users

    The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum

    Get PDF
    Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC–MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi

    Health risks and respiratory intake of submicron particles in the working environment: A case study

    Get PDF
    Background: Powder-coating processes have been extensively used in various industries. The submicron particles generated during the powder-coating process in the workplace have complex compositions and can cause serious diseases. The purpose of this study was to better understand the health risks and respiratory intake of submicron particles during the powder coating process.Methods: The concentrations of and variations in submicron particles were measured using real-time instruments. The health risks of submicron particles were analyzed using the Stoffenmanager Nano model. A new computational fluid dynamics model was used to assess the respiratory intake of ultrafine particles (UFPs), which was indicated by the deposited dosage of UFPs in the olfactory area, nasal cavity, and lungs. The deposited doses of UFPs were used to calculate the average daily doses (ADDs) of workers, according to the method described by the Environmental Protection Agency.Results: The number concentration (NC), mass concentration, surface area concentration, personal NC, and lung-deposited surface area concentration of submicron particles were &gt;105 pt/cm3, 0.2–0.4 mg/m3, 600–1,200 μm2/cm3, 0.7–1.4 pt/cm3, and 100–700 μm2/cm3, respectively. The size distribution showed that the submicron particles mainly gathered between 30 and 200 nm. The health risk of submicron particles was high. Upon respiratory intake, most UFPs (111.5 mg) were inhaled into the lungs, a few UFPs (0.272 mg) were trapped in the nasal cavity, and a small minority of UFPs (0.292 mg) were deposited in the olfactory area. The ADD of male workers with 10 years of exposure in the olfactory area, nasal cavity, and lung were 1.192 × 10–3 mg/kg·d−1, 1.11 × 10–3 mg/kg·d−1, and 0.455 mg/kg·d−1, respectively.Conclusion: Owing to the high concentrations of submicron particles, the workers involved in the powder-coating process are at a high health risk. Moreover, the respiratory intake of UFPs by workers is high, which is suggested by the highly deposited dosage of UFPs in the lungs and the corresponding high ADD in workers. Control measures, including engineering control, management control, and personal protective equipment, must be improved for the protection of workers
    corecore