72,316 research outputs found
Quantum key distribution over 122 km of standard telecom fiber
We report the first demonstration of quantum key distribution over a standard
telecom fiber exceeding 100 km in length. Through careful optimisation of the
interferometer and single photon detector, we achieve a quantum bit error ratio
of 8.9% for a 122km link, allowing a secure shared key to be formed after error
correction and privacy amplification. Key formation rates of up to 1.9 kbit/sec
are achieved depending upon fiber length. We discuss the factors limiting the
maximum fiber length in quantum cryptography
Single-Transverse Spin Asymmetry in Dijet Correlations at Hadron Colliders
We present a phenomenological study of the single-transverse spin asymmetry
in azimuthal correlations of two jets produced nearly "back-to-back" in pp
collisions at RHIC. We properly take into account the initial- and final-state
interactions of partons that can generate this asymmetry in QCD
hard-scattering. Using distribution functions fitted to the existing
single-spin data, we make predictions for various weighted single-spin
asymmetries in dijet correlations that are now readily testable at RHIC.Comment: 14 pages, 2 figure
Test of the Universality of Naive-time-reversal-odd Fragmentation Functions
We investigate the ''spontaneous'' hyperon transverse polarization in
annihilation and semi-inclusive deep inelastic scattering processes as
a test of the universality of the naive-time-reversal-odd transverse momentum
dependent fragmentation functions. We find that universality implies definite
sign relations among various observables. This provides a unique opportunity to
study initial/final state interaction effects in the fragmentation process and
test the associated factorization.Comment: 4 pages, 3 figure
Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis
We formulate the equivalence theorem as a theoretical criterion for
sensitively probing the electroweak symmetry breaking mechanism, and develop a
precise power counting method for the chiral Lagrangian formulated electroweak
theories. Armed with these, we perform a systematic analysis on the
sensitivities of the scattering processes
and for testing all possible effective bosonic
operators in the chiral Lagrangian formulated electroweak theories at the CERN
Large Hadron Collider (LHC). The analysis shows that these two kinds of
processes are "complementary" in probing the electroweak symmetry breaking
sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be
Published in Mod.Phys.Lett.
Avoiding the Detector Blinding Attack on Quantum Cryptography
We show the detector blinding attack by Lydersen et al [1] will be
ineffective on most single photon avalanche photodiodes (APDs) and certainly
ineffective on any detectors that are operated correctly. The attack is only
successful if a redundant resistor is included in series with the APD, or if
the detector discrimination levels are set inappropriately
An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method
The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage
Spin dynamics in the antiferromagnetic phase for electron-doped cuprate superconductors
Based on the --- model we have calculated the dynamical spin
susceptibilities in the antiferromagnetic (AF) phase for electron-doped
cuprates, by use of the slave-boson mean-field theory and random phase
approximation. Various results for the susceptibilities versus energy and
momentum have been shown at different dopings. At low energy, except the
collective spin-wave mode around and 0, we have primarily observed
that new resonance peaks will appear around and equivalent
points with increasing doping, which are due to the particle-hole excitations
between the two AF bands. The peaks are pronounced in the transverse
susceptibility but not in the longitudinal one. These features are predicted
for neutron scattering measurements.Comment: 5 pages, 3 figures, published version with minor change
- …
