278 research outputs found

    Numerical Simulation of Pulsed Plasma Thruster

    Get PDF
    This is an open access book. It is valuable in gaining an understanding of the working mechanism of pulsed plasma thrusters. It facilitates the evaluation of the thruster's working characteristics and propulsive performance, thereby providing a crucial theoretical foundation and reference for the design, development, and engineering application of pulsed plasma thrusters. Additionally, this book significantly contributes to the advancement of space electric propulsion technology. Researchers and engineers in the aerospace propulsion field can greatly benefit from the insights presented within this book

    Robust multi-objective optimization for islanded data center microgrid operations

    Get PDF
    Electricity cost has become a critical concern of data center operations with the rapid increasing of information processing demand. Data center microgrid (DCMG) is a promising way to reduce electric energy consumption from traditional fossil fuel generators and the billing cost, by effectively utilizing local renewable energy, e.g., wind power. However, uncertainties of wind power generation and real-time workload of data center would have significant impacts on the operational efficiency of DCMG, especially when it is in the island mode. For this reason, a novel affinely adjustable policy based robust multi-objective optimization model under flexible uncertainty set is proposed in this paper, which simultaneously optimizes wind power curtailment, the operation cost, and the over-plus level of computation resource, while considering uncertainties of both the wind power and real-time workload. Through numerical simulation studies, the validity of robust multi-objective optimization model for the island operation of DCMG is verified. Besides, the effectiveness of the proposed methods, i.e., the novel affinely adjustable policy and the flexible uncertainty set, in handling uncertainties are evaluated. Compared to the conventional robust multi-objective optimization model, the proposed approach reduces the operating costs of about 10% in average while maintaining similar reliability in numerical simulations. Moreover, the complex quantitative relationship among these multiple objectives is further investigated. Simulation results indicate the minimization of wind power curtailment and over-plus level of computation resource increases about 25% of the operation cost. These quantitative relationships can well support the decision making of DCMG operation management.</p

    Impact of the aqueous corrosion induced alteration layer on mechanical properties of pharmaceutical glasses.

    Get PDF
    It is known that network modifying ions (such as alkali or alkaline earth ions) make glasses susceptible to aqueous corrosion, resulting in the alteration of their surface layers. However, the effect of the altered layers on the mechanical properties of glasses has not been well understood. In this work we study this effect using the pharmaceutical boroaluminosilicate (BAS) glasses as objects by performing nano- and macroscale mechanical tests. The results show that extending the corrosion time increases the thickness of the alteration layer of the BAS glass. The water-related species in the alteration layer lowers the nanohardness, the reduced modulus, the nanowear resistance and Vickers hardness. The corrosion-induced “silica-like” structure in alteration layer benefits the densification of the subsurface caused by nanoindentation and nanowear, and thereby enhances the fracture toughness of the BAS glass. The correlation between the water content in the alteration layer and the mechanical properties has been revealed. This work is instrumental in the design of the next generation of pharmaceutical glasses with higher toughness

    Robust multi-objective optimization for islanded data center microgrid operations

    Get PDF
    Electricity cost has become a critical concern of data center operations with the rapid increasing of information processing demand. Data center microgrid (DCMG) is a promising way to reduce electric energy consumption from traditional fossil fuel generators and the billing cost, by effectively utilizing local renewable energy, e.g., wind power. However, uncertainties of wind power generation and real-time workload of data center would have significant impacts on the operational efficiency of DCMG, especially when it is in the island mode. For this reason, a novel affinely adjustable policy based robust multi-objective optimization model under flexible uncertainty set is proposed in this paper, which simultaneously optimizes wind power curtailment, the operation cost, and the over-plus level of computation resource, while considering uncertainties of both the wind power and real-time workload. Through numerical simulation studies, the validity of robust multi-objective optimization model for the island operation of DCMG is verified. Besides, the effectiveness of the proposed methods, i.e., the novel affinely adjustable policy and the flexible uncertainty set, in handling uncertainties are evaluated. Compared to the conventional robust multi-objective optimization model, the proposed approach reduces the operating costs of about 10% in average while maintaining similar reliability in numerical simulations. Moreover, the complex quantitative relationship among these multiple objectives is further investigated. Simulation results indicate the minimization of wind power curtailment and over-plus level of computation resource increases about 25% of the operation cost. These quantitative relationships can well support the decision making of DCMG operation management.</p

    Impact of hydrous species in surface alteration layer on mechanical properties of oxide glasses

    Get PDF
    Hydrogen bonds of hydrous species in the surface alteration layer are critical factor influencing the mechanical properties of glass. In this study, we revealed the underlying mechanism of this influence using the International Simple Glass (ISG), a boroaluminosilicate glass. Upon exposure to static corrosion in aqueous solutions at 121 °C for 90 min, the ISG surface layer underwent nearly complete leaching of network-modifying ions, leading to structural alterations and increased water content within the layer. Importantly, we found that both the water content and the hydrogen bonding strength of hydrous species in the alteration layer affect the mechanical properties of ISG. Strong hydrogen bonds enhanced the nano adhesion force of the glass surface, while reducing the nano-hardness, elastic modulus, and Vickers hardness of ISG. These findings provide insights into the relationship between interfacial chemistry and mechanical performance, helping design robust and durable glasses tailored for specific applications

    UniHCP: A Unified Model for Human-Centric Perceptions

    Full text link
    Human-centric perceptions (e.g., pose estimation, human parsing, pedestrian detection, person re-identification, etc.) play a key role in industrial applications of visual models. While specific human-centric tasks have their own relevant semantic aspect to focus on, they also share the same underlying semantic structure of the human body. However, few works have attempted to exploit such homogeneity and design a general-propose model for human-centric tasks. In this work, we revisit a broad range of human-centric tasks and unify them in a minimalist manner. We propose UniHCP, a Unified Model for Human-Centric Perceptions, which unifies a wide range of human-centric tasks in a simplified end-to-end manner with the plain vision transformer architecture. With large-scale joint training on 33 human-centric datasets, UniHCP can outperform strong baselines on several in-domain and downstream tasks by direct evaluation. When adapted to a specific task, UniHCP achieves new SOTAs on a wide range of human-centric tasks, e.g., 69.8 mIoU on CIHP for human parsing, 86.18 mA on PA-100K for attribute prediction, 90.3 mAP on Market1501 for ReID, and 85.8 JI on CrowdHuman for pedestrian detection, performing better than specialized models tailored for each task.Comment: Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR 2023

    Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene

    Get PDF
    Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature–pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670–1,240 S m(–1) at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon
    corecore