3,035 research outputs found

    The study of consumption patterns and expectations of organic catering consumers in Taiwan

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference. Organic catering is increasingly provided in public and private food services. In Taiwan, most organic catering is vegetarian and affiliated with organic food stores. These offer diners organic meals to make themselves competitive to attract target markets, and provide related information to improve consumers’ knowledge of organic foods and hopefully increase their consumption. Organic catering consumers’ knowledge of organic foods, attitudes toward consumption, and consumption behavior are all related. Consumption is affected by gender, marital status, age, religion, education, occupation, personal health, family health and expenditure allowance. Regular organic catering customers emphasize “balanced nutrition” and “certification or reliability of organic sources”. The obstacles to consumption for non-regular organic catering consumers are “too expensive” and “difficult to find”. Most organic catering consumers prefer the service styles “health-themed restaurant” and “located inside the organic food stores”

    Code Prediction by Feeding Trees to Transformers

    Full text link
    We advance the state-of-the-art in the accuracy of code prediction (next token prediction) used in autocomplete systems. First, we report that using the recently proposed Transformer architecture even out-of-the-box outperforms previous neural and non-neural systems for code prediction. We then show that by making the Transformer architecture aware of the syntactic structure of code, we further increase the margin by which a Transformer-based system outperforms previous systems. With this, it outperforms the accuracy of an RNN-based system (similar to Hellendoorn et al. 2018) by 18.3\%, the Deep3 system (Raychev et al 2016) by 14.1\%, and an adaptation of Code2Seq (Alon et al., 2018) for code prediction by 14.4\%. We present in the paper several ways of communicating the code structure to the Transformer, which is fundamentally built for processing sequence data. We provide a comprehensive experimental evaluation of our proposal, along with alternative design choices, on a standard Python dataset, as well as on a Facebook internal Python corpus. Our code and data preparation pipeline will be available in open source

    Subject Assessment of Thermal Transition in a Museum: a Case Study

    Get PDF
    Thermal sensation and comfort evaluation schemes typically address thermally adapted people under static circumstances. A disregard of thermal evaluation processes pertaining to transitional states may result in inappropriate temperature settings, inefficient thermal control, and poor thermal comfort. Thus, recently studies have been carried out, which consider thermal perception under dynamic (transitional) conditions. This paper represents an example of such a study. It investigates people's subjective thermal sensation assessment immediately after a spatial transition, i.e., entering or exiting a building or moving between different spaces within a building. Field experiments were conducted in the Museum of Art History (Kunsthistorisches Museum) in Vienna, Austria. Multiple groups of participants moved through a predefined route throughout the building. This route involved five spatial transitions. Immediately after each transition, the participants expressed their thermal sensation vote (TSV) via a questionnaire. Participants' responses were analyzed in the context of monitored temperature differences between the spaces along the participants' route through the building

    Energy regeneration from suspension dynamic modes and self-powered actuation

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper concerns energy harvesting from vehicle suspension systems. The generated power associated with bounce, pitch and roll modes of vehicle dynamics is determined through analysis. The potential values of power generation from these three modes are calculated. Next, experiments are carried out using a vehicle with a four jack shaker rig to validate the analytical values of potential power harvest. For the considered vehicle, maximum theoretical power values of 1.1kW, 0.88kW and 0.97kW are associated with the bounce, pitch and roll modes, respectively, at 20 Hz excitation frequency and peak to peak displacement amplitude of 5 mm at each wheel, as applied by the shaker. The corresponding experimentally power values are 0.98kW, 0.74kW and 0.78kW. An experimental rig is also developed to study the behavior of regenerative actuators in generating electrical power from kinetic energy. This rig represents a quarter-vehicle suspension model where the viscous damper in the shock absorber system is replaced by a regenerative system. The rig is able to demonstrate the actual electrical power that can be harvested using a regenerative system. The concept of self-powered actuation using the harvested energy from suspension is discussed with regard to applications of self-powered vibration control. The effect of suspension energy regeneration on ride comfort and road handling is presented in conjunction with energy harvesting associated with random road excitations.Peer reviewedFinal Accepted Versio
    corecore