3,336 research outputs found
Optimum Water Quality Monitoring Network Design for Bidirectional River Systems
Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM) is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time
Quantum Cloning Machines and the Applications
No-cloning theorem is fundamental for quantum mechanics and for quantum
information science that states an unknown quantum state cannot be cloned
perfectly. However, we can try to clone a quantum state approximately with the
optimal fidelity, or instead, we can try to clone it perfectly with the largest
probability. Thus various quantum cloning machines have been designed for
different quantum information protocols. Specifically, quantum cloning machines
can be designed to analyze the security of quantum key distribution protocols
such as BB84 protocol, six-state protocol, B92 protocol and their
generalizations. Some well-known quantum cloning machines include universal
quantum cloning machine, phase-covariant cloning machine, the asymmetric
quantum cloning machine and the probabilistic quantum cloning machine etc. In
the past years, much progress has been made in studying quantum cloning
machines and their applications and implementations, both theoretically and
experimentally. In this review, we will give a complete description of those
important developments about quantum cloning and some related topics. On the
other hand, this review is self-consistent, and in particular, we try to
present some detailed formulations so that further study can be taken based on
those results.Comment: 98 pages, 12 figures, 400+ references. Physics Reports (published
online
Alpha-fetoprotein level as a biomarker of liver fibrosis status: a cross-sectional study of 619 consecutive patients with chronic hepatitis B
BACKGROUND: Hepatitis B virus (HBV) infection is a serious public health problem worldwide. This study aimed to investigate the relationship between serum alpha-fetoprotein (AFP) levels and pathological stages of liver biopsy in patients with chronic hepatitis B (CHB). METHODS: The study included 619 patients who were diagnosed with CHB from March 2005 to December 2011. AFP levels were measured by electrochemiluminescence. Liver biopsy samples were classified into five levels of inflammation (G) and fibrosis (S) stages, according to the Chinese guidelines for prevention and treatment of viral hepatitis. Two multivariable ordinal regression models were performed to determine associations between AFP, GGT, and APRI (AST/PLT ratio) and stages of inflammation and fibrosis. RESULTS: Significant positive and moderate correlations were shown between AFP levels and inflammation stages and between AFP levels and fibrosis stages (ρ = 0.436 and 0.404, p < 0.001). Median values of AFP at liver fibrosis stages S0-1, S2, S3, and S4 were 3.0, 3.4, 5.4, and 11.3 ng/ml, respectively, and median APRI (AST/PLT ratio) was 0.41. Receiver operating characteristic (ROC) curve analyses revealed that the areas under the curves (AUCs) were 0.685, 0.727, and 0.755 (all p <0.001) for judging inflammation stages of G ≥ 2, G ≥ 3, G = 4 by AFP; and 0.691, 0.717, and 0.718 (all p <0.001) for judging fibrosis stages of S ≥ 2, S ≥ 3, and S = 4 by AFP. APRI levels showed significant positive and moderate correlations with inflammation stages (ρ = 0.445, p < 0.001). AST, GGT, and APRI levels showed significant positive but very weak to weak correlations with fibrosis stages (ρ = 0.137, 0.237, 0.281, p < 0.001). CONCLUSIONS: Serum AFP levels increased as pathological levels of inflammation and fibrosis increased in CHB patients. Our data showed the clinical significance of serum AFP levels in diagnosing liver inflammation and fibrosis. Assessment of liver pathology may be improved by creating a predictive mathematical model by which AFP levels with other biomarkers
Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation.
Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Geniposide-induced hepatic injury in male Sprague-Dawley rats after 3-day intragastric administration of 100 mg/kg or 300 mg/kg Geniposide. Changes in hepatic histomorphology, serum liver enzyme, serum and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression were measured. The 300 mg/kg Geniposide caused liver injury evidenced by pathological changes and increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamytransferase (γ-GT). While liver, but not sera, total bile acids (TBAs) were increased 75% by this dose, dominated by increases in taurine-conjugated bile acids (t-CBAs). The 300 mg/kg Geniposide also down-regulated expression of Farnesoid X receptor (FXR), small heterodimer partner (SHP) and bile salt export pump (BSEP). In conclusion, 300 mg/kg Geniposide can induce liver injury with associated changes in bile acid regulating genes, leading to an accumulation of taurine conjugates in the rat liver. Taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) as well as tauro-α-muricholic acid (T-α-MCA) are potential markers for Geniposide-induced hepatic damage
Proton irradiation effect on SCDs
The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation
Telescope satellite. The swept charge device is selected for the Low Energy
X-ray Telescope. As swept charge devices are sensitive to proton irradiation,
irradiation test was carried out on the HI-13 accelerator at the China
Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the
SCD. The proton fluence delivered to the SCD was
over two hours. It is concluded
that the proton irradiation affects both the dark current and the charge
transfer inefficiency of the SCD through comparing the performance both before
and after the irradiation. The energy resolution of the proton-irradiated SCD
is 212 [email protected] keV at , while it before irradiated is
134 eV. Moreover, better performance can be reached by lowering the operating
temperature of the SCD on orbit
- …
