534 research outputs found
Informal traders lock horns with the formal milk industry: the role of research in pro-poor dairy policy shift in Kenya
A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values
Applying Descriptivist Norms to Folklore Translation
This research delves into the analysis of descriptivist norms in the translation of folklore, using the translation of The Epic of Baeuqloxgdoh as an example. Folklore, representing the collective wisdom of diverse cultures, poses complex challenges in translation where preservation and adaptation intersect. Translation norms, including Gideon Toury’s initial, preliminary, and operational norms, play a pivotal role. Through a comparative analysis of two translated versions of the epic, this paper aims to elucidate the norms underpinning the translation process. By scrutinizing the similarities and differences in translation choices, the study reveals norms governing the translation process. Despite the limitations posed by a small sample size, this research contributes to understanding folklore translation and sheds light on its broader implications for intercultural communication and the preservation of literary heritage
Smart-assist : a reminder system
The objective of this project is to develop a reminder system to remind people of important events. Reminder systems are very important and popular. However, there is no general reminder system currently available. Almost all existing reminder systems are developed for special tasks. This report focuses on developing a reminder system called Smart-Assist, which has all the features of current existing reminder systems. The major distinctive features of Smart-Assist are: (1) An Open Source based system. The use of existing Open Source reduces the cost and promotes its use. (2) A database based application. All the information is stored in a MySQL database and hence persistent. (3) A system which runs either locally or though the Web, but data are made persistent by sharing the same database. (4) A real time system. Event trigger and timing depends on the system time. (5) An automatic event driven alarm system with audio playing feature
Fine-Grained Extraction of Road Networks via Joint Learning of Connectivity and Segmentation
Road network extraction from satellite images is widely applicated in
intelligent traffic management and autonomous driving fields. The
high-resolution remote sensing images contain complex road areas and distracted
background, which make it a challenge for road extraction. In this study, we
present a stacked multitask network for end-to-end segmenting roads while
preserving connectivity correctness. In the network, a global-aware module is
introduced to enhance pixel-level road feature representation and eliminate
background distraction from overhead images; a road-direction-related
connectivity task is added to ensure that the network preserves the graph-level
relationships of the road segments. We also develop a stacked multihead
structure to jointly learn and effectively utilize the mutual information
between connectivity learning and segmentation learning. We evaluate the
performance of the proposed network on three public remote sensing datasets.
The experimental results demonstrate that the network outperforms the
state-of-the-art methods in terms of road segmentation accuracy and
connectivity maintenance
The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development
The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cells and cell division was more active in its quiescent centre (QC). The key transcription factors responsible for maintaining root stem cell and QC identity, such as AP2 transcription factors PLT1 (PLETHORA1) and PLT2 (PLETHORA2), GRAS transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX5 transcription factor WOX5, were all strongly down-regulated in the mutant. On the other hand, expression of the G2/M transition activator CYCB1 was substantially induced in elp2. The auxin efflux transporters PIN1 and PIN2 showed decreased protein levels and PIN1 also displayed mild polarity alterations in elp2, which resulted in a reduced auxin content in the root tip. Either the acetylation or methylation level of each of these genes differed between the mutant and the wild type, suggesting that the ELP2 regulation of root development involves the epigenetic modification of a range of transcription factors and other developmental regulators
Structural and electronic properties of Eu- and Pd-doped ZnO
Doping ZnO with rare earth and 4d transition elements is a popular technique to manipulate the optical properties of ZnO systems. These systems may also possess intrinsic ferromagnetism due to their magnetic moment borne on 4f and 4d electrons. In this work, the structural, electronic, and magnetic properties of Eu- and Pd-doped ZnO were investigated by the ab initio density functional theory methods based on generalized gradient approximation. The relative stability of incorporation sites of the doped elements in the ZnO host lattice was studied. The ground state properties, equilibrium bond lengths, and band structures of both the ZnO:Eu and ZnO:Pd systems were also investigated. The total and partial densities of electron states were also determined for both systems. It was found that in the ZnO:Eu system, ambient ferromagnetism can be induced by introducing Zn interstitial which leads to a carrier-mediated ferromagnetism while the ZnO:Pd system possesses no ferromagnetism
Mechanism of Ligand Activation of a Eukaryotic Cyclic Nucleotide-Gated Channel
Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies
A Strategy to Optimize Recovery in Orthopedic Sports Injuries
An important goal for treatment of sports injuries is to have as short a recovery time as possible. The critical problem with current orthopedic implants is that they are designed to be permanent and have a high complication rate (15%) that often requires removal and replacement with a second surgery; and subsequently a second rehabilitation cycle. This study was designed to test the feasibility of having a device that could provide the needed mechanical properties, while promoting healing, for a specified amount of time and then degrade away, to shorten the recovery time. The specific strategy was to create a surface layer on a degradable metal alloy with a controllable degradation rate. Previous studies have shown the feasibility of using surface treatments to alter the surface integrity (i.e., topography, microhardness, and residual stress) leading to increased fatigue strength and a decreased degradation rate. This study was an extension of these previous studies to look at the changes in surface integrity and mechanical properties initially as well as the degradation over time for two surface treatments (shot peening and burnishing). Although the treatments improved initial properties and the burnishing treatment slowed degradation rate, the faster degradation of the base material in vitro (compared to previous studies) probably reduced the overall impact. Therefore although the study helped support the feasibility of this approach by showing the ability of the surface treatment to modify surface integrity, initial mechanical properties, and degradation rate; the degradation rate of the base material used needs to be slower and/or the surface treatment needs to create a bigger change in the degradation rate. Further it ultimately needs to be shown that the surface treatment can produce a material that will allow orthopedic devices to meet the required clinical design constraints in vivo
- …
