574 research outputs found
Anti-plane Shear of Cylinders and Layered Systems: Cohesive Fracture and Instability
This research examines the mechanics of mode-III cohesive fracture by defect initiation and quasi-static growth in both cylinder and layered systems. The analysis, which is exact, is based on the solution of two fundamental elasticity problems: i) a cylinder subject to an arbitrary shear on one end cap and an equilibrating torque on the other and, ii) a layer subject to arbitrary anti-plane shear traction on one surface and an equilibrating uniform traction on the other. For a particular geometry and defect configuration, these solutions are shown to lead to a pair of interfacial integral equations whose derived cohesive surface fields capture the entire defect evolution process from incipient growth through complete failure. The anti-plane shear separation/slip process is assumed to be modeled by Needleman-type traction-separation relations (e.g., bilinear, Xu-Needleman, frictional) characterized by a shear cohesive strength, a characteristic force length and, in the case of the bilinear law, a finite decohesion cutoff length and possibly other parameters as well. Symmetrically arrayed cohesive surface defects are modeled by a cohesive surface strength function which varies with surface coordinate. Infinitesimal strain equilibrium solutions, which allow for rigid body movement, are found by eigenfunction approximation of the solution of the governing interfacial integral equations.
General features of the solutions to anti-plane shear cohesive fracture in both cylindrical and layered geometries indicate that quasi-static defect initiation and propagation occur under monotonically increasing load. For small values of characteristic force length, brittle behavior occurs that is readily identifiable with the growth of a sharp crack, i.e., the existence of a strong local stress concentration. At larger values of characteristic force length, ductile response occurs which is more typical of a linear “spring” cohesive surface, i.e., more distributed stress and slip distribution. Both behaviors ultimately give rise to abrupt failure of the cohesive surface. Results for the stiff, strong cohesive surface under a small applied load show consistency with static linear elastic fracture mechanics solutions in the literature. By superimposing a frictional part onto the cohesive law, the solution can be used to predict frictional response. Both decohesion and friction dominated cases show similar quasi-static defect propagation process, stable defect growth till a maximum load is reached, then defect growth becomes dynamic and unstable. However, the difference lies in that the friction dominated cohesive surface can still sustain certain load even after response becomes dynamic, but the decohesion dominated case will not. For friction dominated cohesive surfaces, the cylinder cases have smooth deformation processes whereas the layered systems experience a noticeable displacement jump. Both cylinder and layered systems predict the principal plane (perpendicular to principal stress direction) to be close to 45 degrees which helps to explain the orientation of mode-I microcracks in layered systems and the initiation of a spiral crack plane in cylinder geometries.
The cohesive fracture solution to layered geometries can be extended to obtaining traction fields for more complicated defect geometries (array of cracks and subsurface cracks in nonuniform bilayer) which can be used to predict the sequence of defect propagation. The bifurcation analysis of the uniform two-sublayer system shows the phenomenon of non-unique slip for the same loading. The bifurcation analysis for the multi-sublayer system with such non-uniqueness gives an explanation of the asymmetric configuration. For the analysis of nonuniform multi-sublayer systems, no additional difficulty occurs in the problem-solving process. By studying different geometries and crack patterns, the current study discussed the combined effects of interlaminar and intralaminar crack interaction which are important in predicting the most vulnerable place in the system while multiple defects exist
Experimental investigation of dielectric barrier impact on breakdown voltage enhancement of copper wire-plane electrode systems
Non-pressurized air is extensively used as basic insulation media in medium / high voltage equipments. An inherent property of air-insulated designs is that the systems tend to become physically large. Application of Dielectric barrier can increase the breakdown voltage and therefore decrease the size of the equipments.
In this paper, the impact of dielectric barrier on breakdown voltage enhancement of a copper wire-plane system is investigated. For this purpose, the copper wire is covered with different dielectric materials. Depending on the air gap and dielectric strength of the barrier the breakdown can be initiated in the solid or gas dielectric. Theoretically, free charges are affected by the electric field between the electrodes and accumulated at the dielectric surface, this leads to the reduction of electric field in air gap and enhancement of the ifield in the dielectric layer. Therefore, with appropriate selection of the barrier thickness and material, it is possible to increase the breakdown voltage of the insulation system. The influence of different parameters like inter-electrode spacing, and dielectric material on the break-down voltage is investigated for applied 50 Hz AC and DC voltages. The results indicate that up to 240% increase of the breakdown voltage can be achieved
Application of Flux Diverters in High Temperature Superconducting Transformer Windings for AC Loss Reduction
Flux diverters (FDs) are used in High Temperature Superconducting (HTS) transformers for AC loss reduction and flux optimization. In this paper, a 2D axial symmetric superconducting winding model is proposed and two designs of flux diverters are applied to the windings. A homogenization approach is used to analyze the windings with large turn numbers. The key parameters including the number, width, height and the spatial positions of the FDs are adjusted for AC loss and magnetic flux analysis. The means of obtaining optimum designs of the FDs is provided and can be used to develop new winding designs with FDs, which contributes to better electromagnetic performance and higher efficiency of HTS transformers
Primary psoas abscess extending to thigh adductors: case report
<p>Abstract</p> <p>Background</p> <p>Psoas abscess is a rare condition consisting of pyomyositis of the psoas. The worldwide incidence was 12 cases per 100,000 per year in 1992, but the current incidence is unknown. Psoas abscess can descend along the psoas sheath and reach the inner upper third of the thigh, but only infrequently does it penetrate the sheath and involve the thigh adductors. Because of insidious clinical presentation, the diagnosis of psoas abscess is a challenge. Delayed diagnosis can result in poor prognosis.</p> <p>Case presentation</p> <p>A 45-year-old male with no significant past medical history presented with pain in the left thigh, and limitation of movement at the left hip and knee joint for one month. Ultrasound, CT, and MRI revealed a liquid mass in the left psoas. Percutaneous drainage of this mass yielded 300 ml pus from the psoas. After surgery, the patient reported relief of pain; however, ten days after removal of the drainage tube, the patient complained of persistent pain in his left thigh. CT revealed that the psoas abscess had extended inferiorly, and involved the entire set of adductors of the left thigh. Open surgical drainage was performed at the flank and at the thigh, yielding 350 ml of pus from the thigh. After open drainage and adequate antibiotic therapy, the patient made a good recovery. Follow-up CT confirmed complete resolution of the abscess.</p> <p>Conclusions</p> <p>Large psoas abscess can penetrate the psoas sheath, and descend to thigh adductors even after percutaneous drainage. Appropriate treatment includes open surgical drainage along with antibiotic therapy.</p
Correlation between degeneration of cervical intervertebral disc and degeneration of paravertebral muscle
ObjectiveTo investigate the relationship between degeneration of cervical intervertebral disc and degeneration of paravertebral muscles[multifidus (MF), cervical semispinalis (SCer), semispinalis capitis (SCap) and splenius capitis (SPL)].Methods82 patients with chronic neck pain were randomly selected, including 43 males and 39 females, with 50.73 0.7.51 years old. All patients were scanned by 3.0T MRI Philips Ingenia performed conventional MRI sequence scanning and fat measurement sequence mDIXON-Quant scanning of cervical. Fat infiltration (FI) and cross-sectional area (CSA) of cervical paravertebral muscle (MF, SCer, SCap and SPL) at central level of C5–6 disc were measured by Philips 3.0T MRI image post-processing workstation. According to Pfirrmann grading system, there was no grade I in the included cases. The number of grade IIr IV cases were n=16, 40, 19 and 7 respectively. CSA and FI of cervical paravertebral muscles were compared with t test or one-way ANOVA, Spearman correlation analysis was used to evaluate the correlation between age, disc degeneration, and CSA, FI of cervical paravertebral muscles, and multiple linear regression analysis was used to analyze the independent influencing factors of CSA and FI.ResultsCSA of cervical paravertebral muscles in male patients was significantly higher than that in female patients (all P<0.001), but there was no significant difference in FI (all P>0.05). Age was weakly correlated with CSA of MF+SCer, moderately correlated with CSA of SCap and SPL (r=-0.256, -0.355 and -0.361, P<0.05), weakly correlated with FI of SCap and SPL (r= 0.182 and 0.264, P<0.001), moderately correlated with FI of MF+SCer (r=0.408, P<0.001). There were significant differences in FI with disc degeneration (P<0.001, P=0.028 and P=0.005). Further correlation analysis showed that disc degeneration was strongly correlated with FI of MF+SCer (r=0.629, P<0.001), and moderately correlated with FI of SCap and SPL (r=0.363, P=0.001; r=0.345, P=0.002). Multiple linear regression analysis showed that sex and age were the influencing factors of CSA of SCap and SPL, sex was the independent influencing factor of CSA of MF+SCer, and disc degeneration was the independent influencing factor of FI.ConclusionsAge is negatively correlated with CSA and positively correlated with FI. Disc degeneration was correlated with FI of paravertebral muscles, especially with FI of MF and SCer. Sex and age were the influencing factors of CSA, while disc degeneration was the independent influencing factor of FI
Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems
Extreme flammability of polylactide (PLA) has restricted its real-world applications. Traditional research only focuses on developing new effective fire retardants for PLA without considering the effect of melt viscosity on its fire performances. To fill the knowledge gap, a series of PLA matrices of varied melt flow index (MFI) with and without fire retardants are chosen to examine how melt viscosity affects its fire performances. Our results show that the MFI has a governing impact on fire performances of pure PLA and its fire-retardant systems if the samples are placed vertically during fire testing. PLA with higher MFI values achieves higher limiting oxygen index (LOI) values, and a lower loading level of fire retardants is required for PLA to pass a UL-94 V-0 rating. This work unveils the correlation between melt viscosity and their fire performance and offers a practical guidance for creating flame retardant PLA to extend its applications
Corrigendum: Correlation between degeneration of cervical intervertebral disc degeneration of paravertebral muscle
Ginseng-derived Nanoparticles Inhibit Lung Cancer Cell Growth by Promoting Macrophage M1 Polarization
Objective: To explore the molecular mechanism by which ginseng-derived nanoparticles (GDNPs) inhibit the growth of human non-small cell lung cancer cells (A549) by altering the polarization state of macrophages. This study will provide a theoretical basis for further research on fresh ginseng medicine. Methods: The CCK-8 assay was employed to detect the effect of GDNPs on the viability of macrophages (RAW264.7). Real-time quantitative PCR was utilized to detect the transcript levels of IL-6, iNOS, TNF-α, and MCP-1, which were indicators related to the M1 polarization of macrophages stimulated by GDNPs. Flow cytometry was utilized to detect the expression of M1 macrophages molecular markers CD80, which was related to the M1 polarization of macrophages stimulated by GDNPs. RAW264.7 cells were treated with LPS and GDNPs, and the culture supernatants were collected to prepare a conditional medium (CM), which was subsequently co-cultured with A549 cells. CCK-8 and flow cytometry were employed to assess the cell viability, cell cycle, and apoptosis of A549 cells. Western blotting was performed to investigate the effect of GDNPs-CM on the expression of TLR4/MyD88 pathway-related proteins in A549 cells. Results: GDNPs enhanced the cell viability of macrophages (P<0.05, P<0.01) and increased the transcript levels of IL-6, iNOS, TNF-α, and MCP-1 (P<0.05, P<0.01, P<0.0001). GDNPs enhanced the the expression of M1 macrophages molecular markers CD80 (P<0.01). Under the influence of GDNPs-CM, the cell viability of A549 cells was inhibited, and the cells exhibited G1 phase arrest with an increased apoptosis rate (P<0.05, P<0.01). Simultaneously, GDNPs-CM promoted the expression levels of inflammation-related proteins, such as TLR4, MyD88, NF-κB, iNOS, and COX-2 in A549 cells (P<0.05, P<0.01). Conclusion: GDNPs induce apoptosis in lung cancer cells by stimulating M1 polarization of macrophages, inhibiting the proliferation of A549 cells, regulating the A549 cell cycle, and activating the TLR4/MyD88/NF-κB signaling pathway to promote the expression levels of inflammatory factors
- …
