21,156 research outputs found
Achievable Angles Between two Compressed Sparse Vectors Under Norm/Distance Constraints Imposed by the Restricted Isometry Property: A Plane Geometry Approach
The angle between two compressed sparse vectors subject to the norm/distance
constraints imposed by the restricted isometry property (RIP) of the sensing
matrix plays a crucial role in the studies of many compressive sensing (CS)
problems. Assuming that (i) u and v are two sparse vectors separated by an
angle thetha, and (ii) the sensing matrix Phi satisfies RIP, this paper is
aimed at analytically characterizing the achievable angles between Phi*u and
Phi*v. Motivated by geometric interpretations of RIP and with the aid of the
well-known law of cosines, we propose a plane geometry based formulation for
the study of the considered problem. It is shown that all the RIP-induced
norm/distance constraints on Phi*u and Phi*v can be jointly depicted via a
simple geometric diagram in the two-dimensional plane. This allows for a joint
analysis of all the considered algebraic constraints from a geometric
perspective. By conducting plane geometry analyses based on the constructed
diagram, closed-form formulae for the maximal and minimal achievable angles are
derived. Computer simulations confirm that the proposed solution is tighter
than an existing algebraic-based estimate derived using the polarization
identity. The obtained results are used to derive a tighter restricted isometry
constant of structured sensing matrices of a certain kind, to wit, those in the
form of a product of an orthogonal projection matrix and a random sensing
matrix. Follow-up applications to three CS problems, namely, compressed-domain
interference cancellation, RIP-based analysis of the orthogonal matching
pursuit algorithm, and the study of democratic nature of random sensing
matrices are investigated.Comment: submitted to IEEE Trans. Information Theor
Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems based on Stochastic Control Lyapunov Functions
In this paper, a stochastic asymptotic stabilization method is proposed for
deterministic input-affine control systems, which are randomized by including
Gaussian white noises in control inputs. The sufficient condition is derived
for the diffucion coefficients so that there exist stochastic control Lyapunov
functions for the systems. To illustrate the usefulness of the sufficient
condition, the authors propose the stochastic continuous feedback law, which
makes the origin of the Brockett integrator become globally asymptotically
stable in probability.Comment: A preliminary version of this paper appeared in the Proceedings of
the 48th Annual IEEE Conference on Decision and Control [14
- …
