59,925 research outputs found

    Gauge covariant solution for the Schwinger-Dyson equation in three-dimensional QED with Chern-Simons term

    Full text link
    An Abelian gauge theory with Chern-Simons term is investigated for a four-component Dirac fermion in 1+2 dimensions. The Ball-Chiu (BC) vertex function is employed to modify the rainbow-ladder approximation for the Schwinger-Dyson (SD) equation. We numerically solve the SD equation and show the gauge dependence for the resulting phase boundary for the parity and the chiral symmetry.Comment: 16 pages, 7 figures, Published versio

    Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

    Full text link
    Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it. In this paper, we show that similar results hold for constant-time approximation algorithms in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we construct an oracle that serves an access, in constant time, to a nearly optimal solution to a basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii) Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All of those results are \textit{unconditional}. Therefore, for every bounded-degree CSP, we give the best constant-time approximation algorithm among all. A CSP instance is called ϵ\epsilon-far from satisfiability if we must remove at least an ϵ\epsilon-fraction of constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm that distinguishes satisfiable instances from ϵ\epsilon-far instances with probability at least 2/32/3. Using the results above, we also derive, under a technical assumption, an equivalent condition under which a CSP is testable in the bounded-degree model

    Microlocal Lefschetz classes of graph trace kernels

    Full text link
    In this paper, we define the notion of graph trace kernels as a generalization of trace kernels. We associate a microlocal Lefschetz class with a graph trace kernel and prove that this class is functorial with respect to the composition of kernels. We apply graph trace kernels to the microlocal Lefschetz fixed point formula for constructible sheaves.Comment: 18 pages, revised, to appear in Publ. RIM
    corecore