874 research outputs found

    A comprehensive analysis of the correlations between resting-state oscillations in multiple-frequency bands and big five traits

    Get PDF
    Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands

    Effects of time-compressed speech training on multiple functional and structural neural mechanisms involving the left superior temporal gyrus

    Get PDF
    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension

    EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments

    Get PDF
    Expressed sequence tag (EST) sequencing has proven to be an economically feasible alternative for gene discovery in species lacking a draft genome sequence. Ongoing large-scale EST sequencing projects feel the need for bioinformatics tools to facilitate uniform EST handling. This brings about a renewed importance for a universal tool for processing and functional annotation of large sets of ESTs. EGassembler () is a web server, which provides an automated as well as a user-customized analysis tool for cleaning, repeat masking, vector trimming, organelle masking, clustering and assembling of ESTs and genomic fragments. The web server is publicly available and provides the community a unique all-in-one online application web service for large-scale ESTs and genomic DNA clustering and assembling. Running on a Sun Fire 15K supercomputer, a significantly large volume of data can be processed in a short period of time. The results can be used to functionally annotate genes, to facilitate splice alignment analysis, to link the transcripts to genetic and physical maps, design microarray chips, to perform transcriptome analysis and to map to KEGG metabolic pathways. The service provides an excellent bioinformatics tool to research groups in wet-lab as well as an all-in-one-tool for sequence handling to bioinformatics researchers

    Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis

    Get PDF
    Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast

    The relationship between processing speed and regional white matter volume in healthy young people

    Get PDF
    Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task

    Dual-frequency injection-locked continuous-wave near-infrared laser

    Get PDF
    We report a dual-frequency injection-locked continuous-wave near-infrared laser. The entire system consists of a Ti:sapphire ring laser as a power oscillator, two independent diode-lasers employed as seed lasers, and a master cavity providing a frequency reference. Stable dual-frequency injection-locked oscillation is achieved with a maximum output power of 2.8 W. As fundamental performance features of this laser system, we show its single longitudinal/transverse mode characteristics and practical power stability. Furthermore, as advanced features, we demonstrate arbitrary selectivity of the two frequencies and flexible control of their relative powers by simply manipulating the seed lasers.Comment: 8 pages, 4 figure
    corecore