1,490 research outputs found
Disk-Driven Rotating Bipolar Outflow in Orion Source I
One of the outstanding problems in star-formation theory concerns the
transfer of angular momentum such that mass can accrete onto a newly born young
stellar object (YSO). From a theoretical standpoint, outflows and jets are
predicted to play an essential role in angular momentum transfer and their
rotation motions have been reported for both low- and high-mass YSOs. However,
little quantitative discussion on outflow launching mechanisms have been
presented for high-mass YSOs due to a lack of observational data. Here we
present a clear signature of rotation in the bipolar outflow driven by Orion
Source I, a high-mass YSO candidate, using the Atacama Large
Millimeter/Submillimeter Array (ALMA). A rotational transition of silicon
monoxide (Si18O) reveals a velocity gradient perpendicular to the outflow axis
which is consistent with that of the circumstellar disk traced by a
high-excitation water (H2O) line. The launching radii and outward velocity of
the outflow are estimated to be >10 au and 10 km s-1, respectively. These
parameters rule out a possibility that the observed outflow is produced by
entrainment of a high-velocity jet, and that contribution from stellar-wind or
X-wind which have smaller launching radii are significant in the case of Source
I. Thus, present results provide a convincing evidence of a rotating outflow
directly driven by the magneto-centrifugal disk wind launched by a high-mass
YSO candidate.Comment: 16 pages, 8 figures. Accepted version of the manuscript before
editing by Nature Astronomy. Published version is available on the SharedIt
link; http://rdcu.be/AfT
Dominance of gauge artifact in the consistency relation for the primordial bispectrum
The conventional cosmological perturbation theory has been performed under
the assumption that we know the whole spatial region of the universe with
infinite volume. This is, however, not the case in the actual observations
because observable portion of the universe is limited. To give a theoretical
prediction to the observable fluctuations, gauge-invariant observables should
be composed of the information in our local observable universe with finite
volume. From this point of view, we reexamine the primordial non-Gaussianity in
single field models, focusing on the bispectrum in the squeezed limit. A
conventional prediction states that the bispectrum in this limit is related to
the power spectrum through the so-called consistency relation. However, it
turns out that, if we adopt a genuine gauge invariant variable which is
naturally composed purely of the information in our local universe, the leading
term for the bispectrum in the squeezed limit predicted by the consistency
relation vanishes.Comment: 12 pages; v2: accepted version in JCA
Elasticity of semiflexible polymers in two dimensions
We study theoretically the entropic elasticity of a semi-flexible polymer,
such as DNA, confined to two dimensions. Using the worm-like-chain model we
obtain an exact analytical expression for the partition function of the polymer
pulled at one end with a constant force. The force-extension relation for the
polymer is computed in the long chain limit in terms of Mathieu characteristic
functions. We also present applications to the interaction between a
semi-flexible polymer and a nematic field, and derive the nematic order
parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure
Multi-Overlap Simulations for Transitions between Reference Configurations
We introduce a new procedure to construct weight factors, which flatten the
probability density of the overlap with respect to some pre-defined reference
configuration. This allows one to overcome free energy barriers in the overlap
variable. Subsequently, we generalize the approach to deal with the overlaps
with respect to two reference configurations so that transitions between them
are induced. We illustrate our approach by simulations of the brainpeptide
Met-enkephalin with the ECEPP/2 energy function using the global-energy-minimum
and the second lowest-energy states as reference configurations. The free
energy is obtained as functions of the dihedral and the root-mean-square
distances from these two configurations. The latter allows one to identify the
transition state and to estimate its associated free energy barrier.Comment: 12 pages, (RevTeX), 14 figures, Phys. Rev. E, submitte
A Shock-Induced Pair of Superbubbles in the High-Redshift Powerful Radio Galaxy MRC 0406-244
We present new optical spectroscopy of the high-redshift powerful radio
galaxy MRC 0406244 at redshift of 2.429. We find that the two extensions
toward NW and SE probed in the rest-frame ultraviolet image are heated mainly
by the nonthermal continuum of the active galactic nucleus. However, each
extension shows a shell-like morphology, suggesting that they are a pair of
superbubbles induced by the superwind activity rather than by the interaction
between the radio jet and the ambient gas clouds. If this is the case, the
intense starburst responsible for the formation of superbubbles could occur
yr ago. On the other hand, the age of the radio jets may
be of the order of yr, being much shorter than the starburst age.
Therefore, the two events, i.e., the starburst and the radio-jet activities,
are independent phenomena. However, their directions of the expanding motions
could be governed by the rotational motion of the gaseous component in the host
galaxy. This idea appears to explain the alignment effect of MRC 0406244.Comment: 4 pages (emulateapj.sty), Fig. 1 (jpeg) + Fig.2 (eps). Accepted for
publications in ApJ (Letters
Friend of Prmt1, FOP is a novel component of the nuclear SMN complex isolated using biotin affinity purification
SMN (survival motor neuron protein) complexes are essential for the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). During the biogenesis, the SMN complexes bound to UsnRNPs are transported from the cytoplasm to the nucleus, and moved to Cajal body (bodies)/Gems (Cajal/Gems) where the SMN complexes- UsnRNPs are subjected to additional chemical modifications and dissociated to the SMN complexes and the mature UsnRNPs. Although the mature UsnRNPs are assembled into spliceosome with newly transcribed pre-mRNA in the perichromatin fibrils at the chromatin, the role of the dissociated nuclear SMN complexes remains undetermined. In this study, we identified Friend of Prmt1 (FOP; chromatin target of Prmt1, CHTOP; C1orf77) as a novel component of the nuclear SMN complexes by the biotin affinity purification, coupled with the mass spectrometry-based protein identification. FOP was associated with SMN, Gemines 2, 3, 4, 6, and 8, unrip, and fragile X mental retardation 1 protein (FMR1), as well as with U5and U6 snRNAs in the nucleus, but not with Sm proteins, Gemin5, coilin, and U1 and U2snRNAs. Using the quantitative proteomic method with SILAC coupled with RNA interference, we also showed that FOP is required for the association of the SMN complexes with hnRNPs, histone proteins, and various RNA-binding proteins. It is reported that FOP localizes mainly in the nuclear speckles, binds chromatin, and plays a role in mRNA transcriptional regulation. Our present data suggest that the nuclear SMN complex containing FOP participates in the process of mRNA post-transcriptional regulation
- …
