1,683 research outputs found
A possible relation between flare activity in superluminous supernovae and gamma-ray bursts
Significant undulations appear in the light curve of a recently discovered
super-luminous supernova (SLSN) SN 2015bn after the first peak, while the
underlying profile of the light curve can be well explained by a continuous
energy supply from a central engine, possibly the spin-down of a millisecond
magnetar. We propose that these undulations are caused by an intermittent
pulsed energy supply, indicating an energetic flare activity of the central
engine of the SLSN. Many post-burst flares were discovered during X-ray
afterglow observations of Gamma-Ray Bursts (GRBs). We find that the SLSN flares
described here approximately obey the empirical correlation between the
luminosity and time scale of GRB flares, extrapolated to the relevant longer
time scales of SLSN flares. This confirms the possible connection between these
two different phenomena as previously suggested.Comment: 6 pages, 4 figures, accepted for publication in MNRA
Statistics of Chaotic Resonances in an Optical Microcavity
Distributions of eigenmodes are widely concerned in both bounded and open
systems. In the realm of chaos, counting resonances can characterize the
underlying dynamics (regular vs. chaotic), and is often instrumental to
identify classical-to-quantum correspondence. Here, we study, both
theoretically and experimentally, the statistics of chaotic resonances in an
optical microcavity with a mixed phase space of both regular and chaotic
dynamics. Information on the number of chaotic modes is extracted by counting
regular modes, which couple to the former via dynamical tunneling. The
experimental data are in agreement with a known semiclassical prediction for
the dependence of the number of chaotic resonances on the number of open
channels, while they deviate significantly from a purely
random-matrix-theory-based treatment, in general. We ascribe this result to the
ballistic decay of the rays, which occurs within Ehrenfest time, and
importantly, within the timescale of transient chaos. The present approach may
provide a general tool for the statistical analysis of chaotic resonances in
open systems.Comment: 5 pages, 5 figures, and a supplemental informatio
What Powered the Optical Transient AT2017gfo Associated with GW170817?
The groundbreaking discovery of the optical transient AT2017gfo associated with GW170817 opens a unique opportunity to study the physics of double neutron star (NS) mergers. We argue that the standard interpretation of AT2017gfo as being powered by radioactive decay of r-process elements faces the challenge of simultaneously accounting for the peak luminosity and peak time of the event, as it is not easy to achieve the required high mass, and especially the low opacity of the ejecta required to fit the data. A plausible solution would be to invoke an additional energy source, which is probably provided by the merger product. We consider energy injection from two types of the merger products: (1) a post-merger black hole powered by fallback accretion; and (2) a long-lived NS remnant. The former case can only account for the early emission of AT2017gfo, with the late emission still powered by radioactive decay. In the latter case, both early- and late-emission components can be well interpreted as due to energy injection from a spinning-down NS, with the required mass and opacity of the ejecta components well consistent with known numerical simulation results. We suggest that there is a strong indication that the merger product of GW170817 is a long-lived (supramassive or even permanently stable), low magnetic field NS. The result provides a stringent constraint on the equations of state of NSs
Studying newborn neutron stars by the transient emission after stellar collapses and compact binary mergers
The formation of neutron stars (NSs), both from collapses of massive stars
and mergers of compact objects, can be usually indicated by bright transients
emitted from explosively-ejected material. In particular, if the newborn NSs
can rotate at a millisecond period and have a sufficiently high magnetic field,
then the spin-down of the NSs would provide a remarkable amount of energy to
the emitting material. As a result, super-luminous supernovae could be produced
in the massive stellar collapse cases, while some unusual fast evolving and
luminous optical transients could arise from the cases of NS mergers and
accretion-induced collapses of white dwarfs. In all cases, if the dipolar
magnetic fields of the newborn NSs can be amplified to be as high as
G, a relativistic jet could be launched and then a gamma-ray burst can be
produced as the jet successfully breaks out from the surrounding
nearly-isotropic ejected material.Comment: 10 pages, 9 pictures, to appear in the AIP Proceedings of the
Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era
of Gravitational Wave Astronomy, Jan. 3-7, Xiamen, Chin
Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities
We propose and analyze a hybrid device by integrating a microscale diamond
beam with a single built-in nitrogen-vacancy (NV) center spin to a
superconducting coplanar waveguide (CPW) cavity. We find that under an ac
electric field the quantized motion of the diamond beam can strongly couple to
the single cavity photons via dielectric interaction. Together with the strong
spin-motion interaction via a large magnetic field gradient, it provides a
hybrid quantum device where the dia- mond resonator can strongly couple both to
the single microwave cavity photons and to the single NV center spin. This
enables coherent information transfer and effective coupling between the NV
spin and the CPW cavity via mechanically dark polaritons. This hybrid
spin-electromechanical de- vice, with tunable couplings by external fields,
offers a realistic platform for implementing quantum information with single NV
spins, diamond mechanical resonators, and single microwave photons.Comment: Accepted by Phys. Rev. Applie
Decoupled advection-dispersion method for determining wall thickness of slurry trench cutoff walls
Low-permeability slurry trench cutoff walls are commonly constructed as barriers for containment of subsurface point-source pollution or as part of seepage-control systems on contaminated sites. A method to estimate wall thickness in slurry wall design is proposed based on decoupling the advective and dispersive components of contaminant fluxes through the wall. The relative error of the result obtained by the proposed method compared with that by an analytical solution was found to increase as the ratio of the specified breakthrough exit concentration (c*) to the source concentration (c0) increased. For c*/c0 of less than 0.1, which covers common practical situations, the relative error was not greater than 4% and was always conservative, indicating that the proposed method provides sufficient accuracy for design. For a given breakthrough criterion (i.e., c*/c0), the relative error was low for the scenarios having either a low or high column Peclet number, where either dispersion or advection dominates the contaminant migration, respectively, and the relative error was high for the scenario having an intermediate column Peclet number, in which case the coupling effect of advective and dispersive migrations is relatively high
- …
