1,743 research outputs found
Recommended from our members
A Study on Nonthermal Irreversible Electroporation of the Thyroid.
BackgroundNonthermal irreversible electroporation is a minimally invasive surgery technology that employs high and brief electric fields to ablate undesirable tissues. Nonthermal irreversible electroporation can ablate only cells while preserving intact functional properties of the extracellular structures. Therefore, nonthermal irreversible electroporation can be used to ablate tissues safely near large blood vessels, the esophagus, or nerves. This suggests that it could be used for thyroid ablation abutting the esophagus. This study examines the feasibility of using nonthermal irreversible electroporation for thyroid ablation.MethodsRats were used to evaluate the effects of nonthermal irreversible electroporation on the thyroid. The procedure entails the delivery of high electric field pulses (1-3 kV/cm, 100 microseconds) between 2 surface electrodes bracing the thyroid. The right lobe was treated with various nonthermal irreversible electroporation pulse sequences, and the left was the control. After 24 hours of the nonthermal irreversible electroporation treatment, the thyroid was examined with hemotoxylin and eosin histological analysis. Mathematical models of electric fields and the Joule heating-induced temperature raise in the thyroid were developed to examine the experimental results.ResultsTreatment with nonthermal irreversible electroporation leads to follicular cells damage, associated with cell swelling, inflammatory cell infiltration, and cell ablation. Nonthermal irreversible electroporation spares the trachea structure. Unusually high electric fields, for these types of tissue, 3000 V/cm, are needed for thyroid ablation. The mathematical model suggests that this may be related to the heterogeneous structure of the thyroid-induced distortion of local electric fields. Moreover, most of the tissue does not experience thermal damage inducing temperature elevation. However, the heterogeneous structure of the thyroid may cause local hot spots with the potential for local thermal damage.ConclusionNonthermal irreversible electroporation with 3000 V/cm can be used for thyroid ablation. Possible applications are treatment of hyperthyroidism and thyroid cancer. The highly heterogeneous structure of the thyroid distorts the electric fields and temperature distribution in the thyroid must be considered when designing treatment protocols for this tissue type
Online Robot Introspection via Wrench-based Action Grammars
Robotic failure is all too common in unstructured robot tasks. Despite
well-designed controllers, robots often fail due to unexpected events. How do
robots measure unexpected events? Many do not. Most robots are driven by the
sense-plan act paradigm, however more recently robots are undergoing a
sense-plan-act-verify paradigm. In this work, we present a principled
methodology to bootstrap online robot introspection for contact tasks. In
effect, we are trying to enable the robot to answer the question: what did I
do? Is my behavior as expected or not? To this end, we analyze noisy wrench
data and postulate that the latter inherently contains patterns that can be
effectively represented by a vocabulary. The vocabulary is generated by
segmenting and encoding the data. When the wrench information represents a
sequence of sub-tasks, we can think of the vocabulary forming a sentence (set
of words with grammar rules) for a given sub-task; allowing the latter to be
uniquely represented. The grammar, which can also include unexpected events,
was classified in offline and online scenarios as well as for simulated and
real robot experiments. Multiclass Support Vector Machines (SVMs) were used
offline, while online probabilistic SVMs were are used to give temporal
confidence to the introspection result. The contribution of our work is the
presentation of a generalizable online semantic scheme that enables a robot to
understand its high-level state whether nominal or abnormal. It is shown to
work in offline and online scenarios for a particularly challenging contact
task: snap assemblies. We perform the snap assembly in one-arm simulated and
real one-arm experiments and a simulated two-arm experiment. This verification
mechanism can be used by high-level planners or reasoning systems to enable
intelligent failure recovery or determine the next most optima manipulation
skill to be used.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0494
Advancing Systems Biology in the International Conference on Intelligent Biology and Medicine (ICIBM) 2015
The 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13-15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial sessions, one poster session, and four keynote presentations that covered the frontier research in broad areas related to bioinformatics, systems biology, big data science, biomedical informatics, pharmacogenomics, and intelligent computing. Here, we present a summary of the 10 research articles that were selected from ICIBM 2015 and included in the supplement to BMC Systems Biology
A Novel Admission Control Model in Cloud Computing
With the rapid development of Cloud computing technologies and wide adopt of
Cloud services and applications, QoS provisioning in Clouds becomes an
important research topic. In this paper, we propose an admission control
mechanism for Cloud computing. In particular we consider the high volume of
simultaneous requests for Cloud services and develop admission control for
aggregated traffic flows to address this challenge. By employ network calculus,
we determine effective bandwidth for aggregate flow, which is used for making
admission control decision. In order to improve network resource allocation
while achieving Cloud service QoS, we investigate the relationship between
effective bandwidth and equivalent capacity. We have also conducted extensive
experiments to evaluate performance of the proposed admission control
mechanism
A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE
The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at
searching for dark matter indirectly by measuring the spectra of photons,
electrons and positrons originating from deep space. The BGO electromagnetic
calorimeter is one of the key sub-detectors of the DAMPE, which is designed for
high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In
this paper, some methods for energy correction are discussed and tried, in
order to reconstruct the primary energy of the incident electrons. Different
methods are chosen for the appropriate energy ranges. The results of Geant4
simulation and beam test data (at CERN) are presented
Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science
We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine
Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter
A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter
Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL
was investigated with a thermal vacuum experiment. The light output of a BGO
crystal depends on temperature significantly. The temperature coefficient of
each BGO crystal bar has been calibrated, and a correction method is also
presented in this paper
- …
