1,743 research outputs found

    Online Robot Introspection via Wrench-based Action Grammars

    Full text link
    Robotic failure is all too common in unstructured robot tasks. Despite well-designed controllers, robots often fail due to unexpected events. How do robots measure unexpected events? Many do not. Most robots are driven by the sense-plan act paradigm, however more recently robots are undergoing a sense-plan-act-verify paradigm. In this work, we present a principled methodology to bootstrap online robot introspection for contact tasks. In effect, we are trying to enable the robot to answer the question: what did I do? Is my behavior as expected or not? To this end, we analyze noisy wrench data and postulate that the latter inherently contains patterns that can be effectively represented by a vocabulary. The vocabulary is generated by segmenting and encoding the data. When the wrench information represents a sequence of sub-tasks, we can think of the vocabulary forming a sentence (set of words with grammar rules) for a given sub-task; allowing the latter to be uniquely represented. The grammar, which can also include unexpected events, was classified in offline and online scenarios as well as for simulated and real robot experiments. Multiclass Support Vector Machines (SVMs) were used offline, while online probabilistic SVMs were are used to give temporal confidence to the introspection result. The contribution of our work is the presentation of a generalizable online semantic scheme that enables a robot to understand its high-level state whether nominal or abnormal. It is shown to work in offline and online scenarios for a particularly challenging contact task: snap assemblies. We perform the snap assembly in one-arm simulated and real one-arm experiments and a simulated two-arm experiment. This verification mechanism can be used by high-level planners or reasoning systems to enable intelligent failure recovery or determine the next most optima manipulation skill to be used.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0494

    Advancing Systems Biology in the International Conference on Intelligent Biology and Medicine (ICIBM) 2015

    Get PDF
    The 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13-15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial sessions, one poster session, and four keynote presentations that covered the frontier research in broad areas related to bioinformatics, systems biology, big data science, biomedical informatics, pharmacogenomics, and intelligent computing. Here, we present a summary of the 10 research articles that were selected from ICIBM 2015 and included in the supplement to BMC Systems Biology

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented

    Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science

    Get PDF
    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine

    Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter

    Full text link
    A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper
    corecore