3,206 research outputs found
The rationale, design, and methods of a randomized, controlled trial to evaluate the efficacy and safety of an active strategy for the diagnosis and treatment of acute pulmonary embolism during exacerbations of chronic obstructive pulmonary disease
Recommended from our members
Soft phototactic swimmer based on self-sustained hydrogel oscillator.
Oscillations are widely found in living organisms to generate propulsion-based locomotion often driven by constant ambient conditions, such as phototactic movements. Such environment-powered and environment-directed locomotions may advance fully autonomous remotely steered robots. However, most man-made oscillations require nonconstant energy input and cannot perform environment-dictated movement. Here, we report a self-sustained soft oscillator that exhibits perpetual and untethered locomotion as a phototactic soft swimming robot, remotely fueled and steered by constant visible light. This particular out-of-equilibrium actuation arises from a self-shadowing-enabled negative feedback loop inherent in the dynamic light-material interactions, promoted by the fast and substantial volume change of the photoresponsive hydrogel. Our analytical model and governing equation unveil the oscillation mechanism and design principle with key parameters identified to tune the dynamics. On this autonomous oscillator platform, we establish a broadly applicable principle for converting a continuous input into a discontinuous output. The modular design can be customized to accommodate various forms of input energy and to generate diverse oscillatory behaviors. The hydrogel oscillator showcases agile life-like omnidirectional motion in the entire three-dimensional space with near-infinite degrees of freedom. The large force generated by the powerful and long-lasting oscillation can sufficiently overcome water damping and effectively self-propel away from a light source. Such a hydrogel oscillator-based all-soft swimming robot, named OsciBot, demonstrated high-speed and controllable phototactic locomotion. This autonomous robot is battery free, deployable, scalable, and integratable. Artificial phototaxis opens broad opportunities in maneuverable marine automated systems, miniaturized transportation, and solar sails
Angle-dependent magnetoresistance as a sensitive probe of the charge density wave in quasi-one-dimensional semimetal TaNiSe
The behavior of charge density wave (CDW) in an external magnetic field is
dictated by both orbital and Pauli (Zeeman) effects. A quasi-one-dimensional
(Q1D) system features Q1D Fermi surfaces that allow these effects to be
distinguished, which in turn can provide sensitive probe to the underlying
electronic states. Here we studied the field dependence of an incommensurate
CDW in a transition-metal chalcogenide Ta2NiSe7 with a Q1D chain structure. The
angle-dependent magnetoresistance (MR) is found to be very sensitive to the
relative orientation between the magnetic field and the chain direction. With
an applied current fixed along the b axis (the chain direction), the
angle-dependent MR shows a striking change of the symmetry below T_CDW only for
a rotating magnetic field in the ac plane. In contrast, the symmetry axis
remains unchanged for other configurations (H in ab and bc plane). The orbital
effect conforms to the lattice symmetry, while Pauli effect in the form of
{\mu}B B / v_F can be responsible for such symmetry change, provided that the
Fermi velocity v_F is significantly anisotropic and the nesting vector changes
in a magnetic field, which is corroborated by our first-principles
calculations. Our results show that the angle-dependent MR is a sensitive
transport probe of CDW and can be useful for the study of low-dimensional
systems in general
Hospital volume and outcomes for acute pulmonary embolism: Multinational population based cohort study
[Objectives] To evaluate the association between experience in the management of acute pulmonary embolism, reflected by hospital case volume, and mortality.[Design] Multinational population based cohort study using data from the Registro Informatizado de la Enfermedad TromboEmbólica (RIETE) registry between 1 January 2001 and 31 August 2018.[Setting] 353 hospitals in 16 countries.[Participants] 39 257 consecutive patients with confirmed diagnosis of acute symptomatic pulmonary embolism.[Main] outcome measure Pulmonary embolism related mortality within 30 days after diagnosis of the condition.[Results] Patients with acute symptomatic pulmonary embolism admitted to high volume hospitals (>40 pulmonary embolisms per year) had a higher burden of comorbidities. A significant inverse association was seen between annual hospital volume and pulmonary embolism related mortality. Admission to hospitals in the highest quarter (that is, >40 pulmonary embolisms per year) was associated with a 44% reduction in the adjusted odds of pulmonary embolism related mortality at 30 days compared with admission to hospitals in the lowest quarter (<15 pulmonary embolisms per year; adjusted risk 1.3% v 2.3%; adjusted odds ratio 0.56 (95% confidence interval 0.33 to 0.95); P=0.03). Results were consistent in all sensitivity analyses. All cause mortality at 30 days was not significantly reduced between the two quarters (adjusted odds ratio 0.78 (0.50 to 1.22); P=0.28). Survivors showed little change in the odds of recurrent venous thromboembolism (odds ratio 0.76 (0.49 to 1.19)) or major bleeding (1.07 (0.77 to 1.47)) between the low and high volume hospitals.[Conclusions] In patients with acute symptomatic pulmonary embolism, admission to high volume hospitals was associated with significant reductions in adjusted pulmonary embolism related mortality at 30 days. These findings could have implications for management strategies.Peer reviewe
- …
