96 research outputs found
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but
also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
The JCMT BISTRO Survey:The Magnetic Field of the Barnard 1 Star-forming Region
We present the POL-2 850 μm linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects toward higher-density regions of the cloud. We then use the polarization data at 850 μm to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs north-south across most of the cloud, with the exception of B1-c, where it turns more east-west. From the dispersion of polarization angles, we calculate a turbulence correlation length of 5.0 ±2.″5 (1500 au) and a turbulent-to-total magnetic energy ratio of 0.5 ±0.3 inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH3 molecular lines from the Green Bank Ammonia Survey to estimate the strength of the plane-of-sky component of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of 120 ±60 μG and a criticality criterion λ c = 3.0 ±1.5, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.</p
A Tale of Three: Magnetic Fields along the Orion Integral-shaped Filament as Revealed by the JCMT BISTRO Survey
© 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/As part of the B-fields In Star-forming Region Observations survey, we present James Clerk Maxwell Telescope (JCMT) 850 μm polarimetric observations toward the Orion integral-shaped filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multiscale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90∘ for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and nonthermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds.Peer reviewe
Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements
We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 μG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical
Observations of magnetic fields surrounding LkHa 101 taken by the BISTRO survey with JCMT-POL-2
© 2021. The American Astronomical Society. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.3847/1538-4357/abd0fcWe report the first high spatial resolution measurement of magnetic fields surrounding LkHa 101, part of the Auriga- California molecular cloud. The observations were taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope within the framework of the B-fields In Star-forming Region Observations (BISTRO) survey. Observed polarization of thermal dust emission at 850 μm is found to be mostly associated with the redshifted gas component of the cloud. The magnetic field displays a relatively complex morphology. Two variants of the Davis-Chandrasekhar- Fermi method, unsharp masking and structure function, are used to calculate the strength of magnetic fields in the plane of the sky, yielding a similar result of BPOS~ 115 μG. The mass-to-magnetic-flux ratio in critical value units, λ~0.3, is the smallest among the values obtained for other regions surveyed by POL-2. This implies that the LkHa 101 region is subcritical, and the magnetic field is strong enough to prevent gravitational collapse. The inferred dB/B0~0.3 implies that the large-scale component of the magnetic field dominates the turbulent one. The variation of the polarization fraction with total emission intensity can be fitted by a power law with an index of a =0.82±0.03, which lies in the range previously reported for molecular clouds. We find that the polarization fraction decreases rapidly with proximity to the only early B star (LkHa 101) in the region. Magnetic field tangling and the joint effect of grain alignment and rotational disruption by radiative torques can potentially explain such a decreasing trend.Peer reviewe
Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations
We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity
The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43
We present observations of polarized dust emission at 850 μm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10
22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∼160 ± 30 μG in the main starless core and up to ∼90 ± 40 μG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-Alfvénic. We also present a new method of data reduction for these denser but fainter objects like starless cores
Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-Mass Star-Forming Region NGC2264 : Global Properties and Local Magnetogravitational Configurations
We report 850 m continuum polarization observations toward the
filamentary high-mass star-forming region NGC 2264, taken as part of the
B-fields In STar forming Regions Observations (BISTRO) large program on the
James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured
non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing
orientation around 30 deg from north to east. Field strengths estimates and a
virial analysis for the major clumps indicate that NGC 2264C is globally
dominated by gravity while in 2264D magnetic, gravitational, and kinetic
energies are roughly balanced. We present an analysis scheme that utilizes the
locally resolved magnetic field structures, together with the locally measured
gravitational vector field and the extracted filamentary network. From this, we
infer statistical trends showing that this network consists of two main groups
of filaments oriented approximately perpendicular to one another. Additionally,
gravity shows one dominating converging direction that is roughly perpendicular
to one of the filament orientations, which is suggestive of mass accretion
along this direction. Beyond these statistical trends, we identify two types of
filaments. The type-I filament is perpendicular to the magnetic field with
local gravity transitioning from parallel to perpendicular to the magnetic
field from the outside to the filament ridge. The type-II filament is parallel
to the magnetic field and local gravity. We interpret these two types of
filaments as originating from the competition between radial collapsing, driven
by filament self-gravity, and the longitudinal collapsing, driven by the
region's global gravity.Comment: Accepted for publication in the Astrophysical Journal. 43 pages, 32
figures, and 4 tables (including Appendix
- …
