89 research outputs found

    Porcine Reproductive and Respiratory Syndrome in Hybrid Wild Boars, China

    Get PDF
    We conducted a serologic investigation of porcine reproductive and respiratory syndrome virus (PRRSV) in hybrid wild boar herds in China during 2008–2009. PRRSV isolates with novel genetic markers were recovered. Experimental infection of pigs indicated that hybrid wild boars are involved in the epidemiology of PRRSV

    LSD1 inhibition by tranylcypromine hydrochloride reduces alkali burn-induced corneal neovascularization and ferroptosis by suppressing HIF-1α pathway

    Get PDF
    BackgroundCorneal neovascularization (CNV) is a sight-threatening condition that necessitates epigenetic control. The role of lysine-specific demethylase 1 (LSD1) in CNV remains unclear, despite its established significance in tumor angiogenesis regulation.MethodsAn alkali burn-induced CNV mouse model was used in vivo. The effects of LSD1 inhibitor tranylcypromine hydrochloride (TCP) were examined through slit lamp, histological staining, and immunofluorescence. The expression of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were assessed in corneal tissues. Oxidative stress and ferrous ion expression during CNV were determined using 4-HNE, GPX4, and FerroOrange staining. In vitro, a hypoxia-reoxygenation (H/R) model was established using human umbilical vein endothelial cells (HUVECs) to study LSD1 or hypoxia-inducible factor (HIF-1α) knockdown and lentiviral overexpression of HIF-1α. The effects on HUVECs migration, invasion, and angiogenesis were evaluated through cell scratching assay, transwell migration assay and tube formation assay. The role of ferroptosis was investigated using ROS staining, FerroOrange staining, and key ferroptosis proteins. Further, The JAK2/STAT3 pathway’s involvement in CNV regulation was explored through in vivo experiments with subconjunctival injection of AG490.ResultsThe results showed a substantial correlation between corneal damage and LSD1 levels. In addition, HIF-1α expression was also elevated after alkali burns, and subconjunctival injection of TCP reduced corneal inflammation and neovascularization. Corneal alkali burns increased ROS levels and reduced antioxidative stress indicators, accompanied by elevated ferrous ion levels, which were reversed by TCP injection. In vitro, TCP or siRNAs inhibited H/R-induced ferroptosis and angiogenesis in HUVECs by affecting specific protein expressions and MDA, SOD, and GSH levels. HIF-1α levels, associated with ROS production, ferroptosis, and angiogenesis, increased during H/R, but were reversed by TCP or siRNA administration. HIF-1α overexpression counteracted the effects of LSD1 inhibition. Additionally, AG490 injection effectively reduced HIF-1α and VEGFA expression in the CNV model.DiscussionThese findings suggest that LSD1 inhibition via the HIF-1α-driven pathway prevents angiogenesis, oxidative stress, and ferroptosis in corneal alkali burn-induced CNV, highlighting LSD1 as a potential therapeutic target

    Evaluation of a computer-aided diagnostic model for corneal diseases by analyzing in vivo confocal microscopy images

    Get PDF
    ObjectiveIn order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians’ workload.MethodsA total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman’s membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance.ResultsThe accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886.ConclusionA computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes

    Numerical Simulation of Radioactive Material Around Opening-Windows Construction

    Full text link
    The diffusion of radioactive material in the atmosphere is vital for environmental assessment. Many researches have focused on the diffusion and deposition outside the construction, whereas less attention was paid on the law of the diffusion from the outside into the room. In this paper, three-dimensional numerical simulation was carried out by using OpenFOAM, an open source software for CFD. The incompressible steady flow around the construction with opening windows was investigated. The influence of inflow wind velocity and windows distribution was considered. The results show that as the inflow wind velocity increases, the diffusion is more significant. The vortexes is related to the windows distribution. When windows are perpendicular to the direction of the inflow wind, the concentration inside the construction is higher than that outside. Besides, the radioactive material gathers in the vicinity of the indoor downstream wall. When windows are parallel to the direction of the inflow wind, the concentration of indoors and outdoors is opposite, and the indoor radioactive material is distributed evenly. This study can provide theoretical support for the emergency evacuation around the construction.</jats:p
    corecore