327 research outputs found

    Pollinator diversity (Hymenoptera and Diptera) in semi-natural habitats in Serbia during summer

    Get PDF
    The aim of this study was to assess species diversity and population abundance of the two main orders of pollinating insects, Hymenoptera and Diptera. The survey was conducted in 16 grassland fragments within agro-ecosystems in Vojvodina, as well as in surrounding fields with mass-flowering crops. Pollinators were identified and the Shannon-Wiener Diversity Index was used to measure their diversity. Five families, 7 subfamilies, 26 genera and 63 species of insects were recorded. All four big pollinator groups investigated were recorded; hoverflies were the most abundant with 32% of the total number of individuals, followed by wild bees - 29%, honeybees - 23% and bumblebees with 16%

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    1281O Atezolizumab (atezo) vs platinum-based chemo in blood-based tumour mutational burden-positive (bTMB+) patients (pts) with first-line (1L) advanced/metastatic (m)NSCLC: Results of the Blood First Assay Screening Trial (BFAST) phase III cohort C

    Get PDF
    Background: TMB is a promising biomarker for immunotherapy in NSCLC, but current data are mostly retrospective. As not all pts may have sufficient tissue for comprehensive biomarker testing, bTMB was prospectively tested as a novel biomarker using targeted next-generation sequencing. BFAST (NCT03178552), a global, open-label, multi-cohort trial, evaluated safety and efficacy of targeted therapies or immunotherapy in biomarker-selected pts with unresectable mNSCLC. Here we present results from Cohort C of 1L atezo vs platinum-based chemo in pts with bTMB+ mNSCLC. Methods: We planned to randomise ≈440 pts with 1L mNSCLC with measurable disease per RECIST 1.1 and bTMB ≥10 (9.1 mut/Mb; FMI bTMB assay) 1:1 to atezo 1200 mg IV every 3 weeks or chemo and stratified by tissue availability, ECOG PS, bTMB and histology. The primary endpoint was INV-PFS per RECIST 1.1 in bTMB ≥16 (14.5 mut/Mb) pts. Key secondary endpoints included OS in bTMB ≥10 (intent to treat, ITT) and bTMB ≥16 pts, and INV-PFS in ITT pts. Results: 471 pts were assigned to atezo (n=234) or chemo (n=237). At baseline, 72% had non-squamous histology, 2% never smoked and median SLD was 103 mm. 145 pts with bTMB ≥16 were assigned to atezo and 146 to chemo. At data cutoff (21 May 2020) minimum follow up was 6 mo. INV-PFS difference in bTMB ≥16 pts for atezo vs chemo was not significant (P=0.053; Table). Grade 3-4 TRAEs occurred in 18% (atezo) vs 46% (chemo) of pts. Serious TRAEs occurred in 12% (atezo) vs 14% (chemo). Results at other bTMB thresholds and by F1L CDx will also be presented as an exploratory analysis. Conclusions: The primary PFS endpoint in bTMB ≥16 pts was not met. OS was numerically better with atezo vs chemo but the difference was not statistically significant. The safety profile of atezo vs chemo was favourable and consistent with atezo monotherapy across indications

    A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1)

    Get PDF
    Background: This trial was designed to evaluate the activity and safety of ganetespib in combination with docetaxel in advanced non-small cell lung cancer (NSCLC) and to identify patient populations most likely to benefit from the combination. Patients and methods: Patients with one prior systemic therapy for advanced disease were eligible. Docetaxel (75 mg/m&lt;sup&gt;2&lt;/sup&gt; on day 1) was administered alone or with ganetespib (150 mg/m&lt;sup&gt;2&lt;/sup&gt; on days 1 and 15) every 3 weeks. The primary end points were progression-free survival (PFS) in two subgroups of the adenocarcinoma population: patients with elevated lactate dehydrogenase (eLDH) and mutated KRAS (mKRAS). Results: Of 385 patients enrolled, 381 were treated. Early in the trial, increased hemoptysis and lack of efficacy were observed in nonadenocarcinoma patients (n = 71); therefore, only patients with adenocarcinoma histology were subsequently enrolled. Neutropenia was the most common grade ≥3 adverse event: 41% in the combination arm versus 42% in docetaxel alone. There was no improvement in PFS for the combination arm in the eLDH (N = 114, adjusted hazard ratio (HR) = 0.77, P = 0.1134) or mKRAS (N = 89, adjusted HR = 1.11, P = 0.3384) subgroups. In the intent-to-treat adenocarcinoma population, there was a trend in favor of the combination, with PFS (N = 253, adjusted HR = 0.82, P = 0.0784) and overall survival (OS) (adjusted HR = 0.84, P = 0.1139). Exploratory analyses showed significant benefit of the ganetespib combination in the prespecified subgroup of adenocarcinoma patients diagnosed with advanced disease &gt;6 months before study entry (N = 177): PFS (adjusted HR = 0.74, P = 0.0417); OS (adjusted HR = 0.69, P = 0.0191). Conclusion: Advanced lung adenocarcinoma patients treated with ganetespib in combination with docetaxel had an acceptable safety profile. While the study's primary end points were not met, significant prolongation of PFS and OS was observed in patients &gt;6 months from diagnosis of advanced disease, a subgroup chosen as the target population for the phase III study.</p

    Molecular decoding using luminescence from an entangled porous framework

    Get PDF
    Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide–aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration

    Venous gas embolism as a predictive tool for improving CNS decompression safety

    Get PDF
    A key process in the pathophysiological steps leading to decompression sickness (DCS) is the formation of inert gas bubbles. The adverse effects of decompression are still not fully understood, but it seems reasonable to suggest that the formation of venous gas emboli (VGE) and their effects on the endothelium may be the central mechanism leading to central nervous system (CNS) damage. Hence, VGE might also have impact on the long-term health effects of diving. In the present review, we highlight the findings from our laboratory related to the hypothesis that VGE formation is the main mechanism behind serious decompression injuries. In recent studies, we have determined the impact of VGE on endothelial function in both laboratory animals and in humans. We observed that the damage to the endothelium due to VGE was dose dependent, and that the amount of VGE can be affected both by aerobic exercise and exogenous nitric oxide (NO) intervention prior to a dive. We observed that NO reduced VGE during decompression, and pharmacological blocking of NO production increased VGE formation following a dive. The importance of micro-nuclei for the formation of VGE and how it can be possible to manipulate the formation of VGE are discussed together with the effects of VGE on the organism. In the last part of the review we introduce our thoughts for the future, and how the enigma of DCS should be approached

    Virgo detector characterization and data quality:Tools

    Get PDF
    Detector characterization and data quality studies - collectively referred to as DetChar activities in this article - are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments (upgrade, tuning and optimization, data taking), are required at all steps of the dataflow (from data acquisition to the final list of GW events) and operate at various latencies (from near real-time to vet the public alerts to offline analyses). This work requires a wide set of tools which have been developed over the years to fulfill the requirements of the various DetChar studies: data access and bookkeeping; global monitoring of the instruments and of the different steps of the data processing; studies of the global properties of the noise at the detector outputs; identification and follow-up of noise peculiar features (whether they be transient or continuously present in the data); quick processing of the public alerts. The present article reviews all the tools used by the Virgo DetChar group during the third LIGO-Virgo Observation Run (O3, from April 2019 to March 2020), mainly to analyze the Virgo data acquired at EGO. Concurrently, a companion article focuses on the results achieved by the DetChar group during the O3 run using these tools

    Virgo detector characterization and data quality:Results from the O3 run

    Get PDF
    The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected GW signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an 11 months data taking period, between April 2019 and March 2020, that led to the addition of 79 events to the catalog of transient GW sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the manifold exploitation of the detected waveforms benefit from an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise sources. These activities, collectively named detector characterization and data quality or DetChar, span the whole workflow of the Virgo data, from the instrument front-end hardware to the final analyses. They are described in detail in the following article, with a focus on the results achieved by the Virgo DetChar group during the O3 run. Concurrently, a companion article describes the tools that have been used by the Virgo DetChar group to perform this work

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation
    corecore