206 research outputs found
Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical
resonators. They hold promise for various scientific and technological
applications, including sensing of mass, force, and charge, as well as the
study of quantum phenomena at the mesoscopic scale. Here, we have discovered
that the dynamics of nanotube and graphene resonators is in fact highly exotic.
We propose an unprecedented scenario where mechanical dissipation is entirely
determined by nonlinear damping. As a striking consequence, the quality factor
Q strongly depends on the amplitude of the motion. This scenario is radically
different from that of other resonators, whose dissipation is dominated by a
linear damping term. We believe that the difference stems from the reduced
dimensionality of carbon nanotubes and graphene. Besides, we exploit the
nonlinear nature of the damping to improve the figure of merit of
nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
A Mechanical Mass Sensor with Yoctogram Resolution
Nanoelectromechanical systems (NEMS) have generated considerable interest as
inertial mass sensors. NEMS resonators have been used to weigh cells,
biomolecules, and gas molecules, creating many new possibilities for biological
and chemical analysis [1-4]. Recently, NEMS-based mass sensors have been
employed as a new tool in surface science in order to study e.g. the phase
transitions or the diffusion of adsorbed atoms on nanoscale objects [5-7]. A
key point in all these experiments is the ability to resolve small masses. Here
we report on mass sensing experiments with a resolution of 1.7 yg (1 yg =
10^-24 g), which corresponds to the mass of one proton, or one hydrogen atom.
The resonator is made of a ~150 nm long carbon nanotube resonator vibrating at
nearly 2 GHz. The unprecedented level of sensitivity allows us to detect
adsorption events of naphthalene molecules (C10H8) and to measure the binding
energy of a Xe atom on the nanotube surface (131 meV). These ultrasensitive
nanotube resonators offer new opportunities for mass spectrometry,
magnetometry, and adsorption experiments.Comment: submitted version of the manuscrip
Fibrinogen storage disease without hypofibrinogenemia associated with estrogen therapy
BACKGROUND: Cytoplasmic inclusion bodies within hepatocytes may have different etiologies, including the Endoplasmic Reticulum Storage Diseases (ERSDs). ERSD is a pathological condition characterized by abnormal accumulation of proteins destined for secretion in the endoplasmic reticulum of hepatocytes; it may be congenital (primary) or acquired (secondary). Fibrinogen storage disease is a form of ERSD. CASE PRESENTATION: We present a case of fibrinogen storage disease secondary to estrogen replacement therapy. Its causal relationship to the drug is shown by histological, immunohistochemical and ultrastructural studies of paired liver biopsies obtained during and after the drug therapy. CONCLUSION: The liver biopsies of patients with idiopathic liver enzyme abnormalities should be carefully evaluated for cytoplasmic inclusion bodies and, although rare, fibrinogen deposits
Physical inactivity in nine European and Central Asian countries: an analysis of national population-based survey results
Background
Physical inactivity is a major risk factor for non-communicable diseases. However, recent and systematically obtained national-level data to guide policy responses are often lacking, especially in countries in Eastern Europe and Central Asia. This article describes physical inactivity patterns among adults in Armenia, Azerbaijan, Belarus, Georgia, Kyrgyzstan, Republic of Moldova, Tajikistan, Turkey and Uzbekistan.
Methods
Data were collected using the Global Physical Activity Questionnaire drawing nationally representative samples of adults in each country. The national prevalence of physical inactivity was calculated as well as the proportional contribution to total physical activity (PA) during work, transport and leisure-time. An adjusted logistic regression model was applied to analyze the association of age, gender, education, household status and income with physical inactivity.
Results
National prevalence of physical inactivity ranged from 10.1% to 43.6%. The highest proportion of PA was registered during work or in the household in most countries, whereas the lowest was during leisure-time in all countries. Physical inactivity was more likely with older age in eight countries, with female gender in three countries, and with living alone in three countries. There was no clear pattern of association with education and income.
Conclusion
Prevalence of physical inactivity is heterogeneous across the region. PA during leisure-time contributes minimally to total PA in all countries. Policies and programs that increase opportunities for active travel and leisure-time PA, especially for older adults, women and people living alone will be an essential part of strategies to increase overall population PA.The authors gratefully acknowledge support from a grant from the Government of the Russian Federation in the context of the WHO European Office for the Prevention and Control of NCDs
Rhodium nanoparticles for ultraviolet plasmonics
The nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.This work has
been supported by NSF-ECCS-12-32239. This work was
partially supported by the Army’s In-house Laboratory
Innovative Research program. Financial support from USAITCA
(project no. W911NF-13-1-0245) and MICINN (Spanish
Ministry of Science and Innovation, project no. FIS2013-
45854-P) is also acknowledged
Thermal degradation kinetics of ascorbic acid, thiamine and riboflavin in rosehip (Rosa canina L) nectar
Magnetic hot spots in closely spaced thick gold nanorings
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htmlLigh-matter interaction at optical frequencies is mostly mediated by the electric component of the
electromagnetic field, with the magnetic component usually being considered negligible. Recently, it has been shown that properly engineered metallic nanostructures can provide a magnetic response at optical frequencies originated from real or virtual flows of electric current in the structure. In this work,
we demonstrate a magnetic plasmonic mode which emerges in closely spaced thick gold nanorings. The plasmonic resonance obtains a magnetic dipole character by sufficiently increasing the height of the nanorings. Numerical simulations show that a virtual current loop appears at resonance for sufficiently thick nanorings, resulting in a strong concentration of the magnetic field in the gap region (magnetic hot spot). We find that there is an optimum thickness that provides the maximum magnetic intensity
enhancement (over 200-fold enhancement) and give an explanation of this observation. This strong magnetic resonance, observed both experimentally and theoretically, can be used to build new metamaterials and resonant loop nanoantennas at optical frequencies.This work has been supported by Spanish Government and European Union (EU) funds under contracts CSD2008-00066 and TEC2011-28664-C02-02 and Universitat Politecnica de Valencia (program INNOVA 2011). The authors extend special thanks to Mr. J. Ross Aitken for his contribution to this work.Lorente Crespo, M.; Wang, L.; Ortuño Molinero, R.; García Meca, C.; Ekinci, Y.; Martínez Abietar, AJ. (2013). Magnetic hot spots in closely spaced thick gold nanorings. Nano Letters. 13(6):2654-2661. https://doi.org/10.1021/nl400798sS2654266113
Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation
Rituximab-associated hypogammaglobulinemia in children with idiopathic nephrotic syndrome: results of an ESPN survey
Background: There is paucity of information on rituximab-associated hypogammaglobulinemia (HGG) and its potential infectious consequences in children treated for idiopathic nephrotic syndrome (INS). Methods: A survey was distributed by the European Society Pediatric Nephrology to its members. It addressed the screening and management practices of pediatric nephrology units for recognizing and treating RTX-associated HGG and its morbidity and mortality. Eighty-four centers which had treated an overall 1328 INS children with RTX responded. Results: The majority of centers administered several courses of RTX and continued concomitant immunosuppressive therapy. Sixty-five percent of centers routinely screened children for HGG prior to RTX infusion, 59% during, and 52% following RTX treatment. Forty-seven percent had observed HGG prior to RTX administration, 61% during and 47% >9 months following treatment in 121, 210, and 128 subjects respectively. Thirty-three severe infections were reported among the cohort of 1328 RTX-treated subjects, of whom 3 children died. HGG had been recognized in 30/33 (80%) of them. Conclusions: HGG in steroid-dependent/frequently relapsing nephrotic syndrome (SDNS/FRNS) children is probably multifactorial and can be observed prior to RTX administration in children with SDNS/FRNS. Persistent HGG lasting >9 months from RTX infusion is not uncommon and may increase the risk of severe infections in this cohort. We advocate for the obligatory screening for HGG in children with SDNS/FRNS prior to, during, and following RTX treatment. Further research is necessary to identify risk factors for developing both HGG and severe infections before recommendations are made for its optimal management
- …
