14,499 research outputs found
Current-carrying string loops in black-hole spacetimes with a repulsive cosmological constant
Current-carrying string loop dynamics in Schwarzschild-de Sitter spacetimes
characterized by the cosmological parameter {\lambda}=1/3{\Lambda}M^2 is
investigated. With attention concentrated to the axisymmetric motion of string
loops it is shown that the resulting motion is governed by the presence of an
outer tension barrier and an inner angular momentum barrier that are influenced
by the black hole gravitational field given by the mass M and the cosmic
repulsion given by the cosmological constant {\Lambda}. The gravitational
attraction could cause capturing of the string having low energy by the black
hole or trapping in its vicinity; with high enough energy, the string can
escape (scatter) to infinity. The role of the cosmic repulsion becomes
important in vicinity of the so-called static radius where the gravitational
attraction is balanced by the cosmic repulsion-it is demonstrated both in terms
of the effective potential of the string motion and the basin boundary method
reflecting its chaotic character, that a potential barrier exists along the
static radius behind which no trapped oscillations may exist. The trapped
states of the string loops, governed by the interplay of the gravitating mass M
and the cosmic repulsion, are allowed only in Schwarzschild-de Sitter
spacetimes with the cosmological parameter {\lambda}<{\lambda}_trap 0.00497.
The trapped oscillations can extend close to the radius of photon circular
orbit, down to r_mt 3.3M.Comment: 21 pages, 22 figure
Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis
© 1999 by the Infectious Diseases Society of America. All rights reserved.Free-living amoebae cause three well-defined disease entities: a rapidly fatal primary meningoencephalitis, a chronic granulomatous amoebic encephalitis (GAE), and a chronic amoebic keratitis. GAE occurs in immunocompromised persons. Recently, another type of free-living amoeba, Balamuthia mandrillaris, has been shown to cause GAE. The finding that this amoeba has caused infection in some healthy children has raised the possibility that humans may lack immunity to B. mandrillaris. Human serum was examined for the presence of surface antibodies specific for this amoeba by immunofluorescence. Sera from adults contained titers of 1/64–1/256 of anti–B. mandrillaris antibodies (IgM and IgG classes), which did not cross-react with other amoebae. Cord blood contained very low antibody levels, but levels similar to those in adults were seen in serum of 1- to 5-year-old children.Z. Hua Huang, Antonio Ferrante, and Rodney F. Carte
A comment on a paper by Carot et al
In a recent paper Carot et al. considered carefully the definition of
cylindrical symmetry as a specialisation of the case of axial symmetry. One of
their propositions states that if there is a second Killing vector, which
together with the one generating the axial symmetry, forms the basis of a
two-dimensional Lie algebra, then the two Killing vectors must commute, thus
generating an Abelian group. In this comment a similar result, valid under
considerably weaker assumptions, is recalled: any two-dimensional Lie
transformation group which contains a one-dimensional subgroup whose orbits are
circles, must be Abelian. The method used to prove this result is extended to
apply to three-dimensional Lie transformation groups. It is shown that the
existence of a one-dimensional subgroup with closed orbits restricts the
Bianchi type of the associated Lie algebra to be I (Abelian), II, III, VII_0,
VIII or IX. The relationship between the present approach and that of the
original paper is discussed.Comment: 6 pages, Te
The most general axially symmetric electrovac spacetime adimitting separable equations of motion
We obtain the most general solution of the Einstein electro - vacuum equation
for the stationary axially symmetric spacetime in which the Hamilton-Jacobi and
Klein - Gordon equations are separable. The most remarkable feature of the
solution is its invariance under the duality transformation involving mass and
NUT parameter, and the radial and angle coordinates. It is the general solution
for a rotating (gravitational dyon) particle which is endowed with both
gravoelectric and gravomagnetic charges, and there exists a duality
transformation from one to the other. It also happens to be a transform of the
Kerr - NUT solution. Like the Kerr family, it is also possible to make this
solution radiating which asymptotically conforms to the Vaidya null radiation.Comment: 9 pages, RevTex, Accepted by Class. Quantum Grav. Title, Abstract and
some expressions have been modified, typos corrected. The solution and main
result remain unaltere
Charged Rotating Black Holes in Four-Dimensional Gauged and Ungauged Supergravities
We study four-dimensional non-extremal charged rotating black holes in
ungauged and gauged supergravity. In the ungauged case, we obtain rotating
black holes with four independent charges, as solutions of N=2 supergravity
coupled to three abelian vector multiplets. This is done by reducing the theory
along the time direction to three dimensions, where it has an O(4,4) global
symmetry. Applied to the reduction of the uncharged Kerr metric,
O(1,1)^4\subset O(4,4) transformations generate new solutions that correspond,
after lifting back to four dimensions, to the introduction of four independent
electromagnetic charges. In the case where these charges are set pairwise
equal, we then generalise the four-dimensional rotating black holes to
solutions of gauged N=4 supergravity, with mass, angular momentum and two
independent electromagnetic charges. The dilaton and axion fields are
non-constant. We also find generalisations of the gauged and ungauged solutions
to include the NUT parameter, and for the ungauged solutions, the acceleration
parameter too. The solutions in gauged supergravity provide new gravitational
backgrounds for a further study of the AdS_4/CFT_3 correspondence at non-zero
temperature.Comment: Latex, 30 page
A local characterisation for static charged black holes
We obtain a purely local characterisation that singles out the
Majumdar-Papapetrou class, the near-horizon Bertotti-Robinson geometry and the
Reissner-Nordstr\"om exterior solution, together with its plane and hyperbolic
counterparts, among the static electrovacuum spacetimes. These five classes are
found to form the whole set of static Einstein-Maxwell fields without sources
and conformally flat space of orbits, this is, the conformastat electrovacuum
spacetimes. The main part of the proof consists in showing that a functional
relationship between the gravitational and electromagnetic potentials must
always exist. The classification procedure provides also an improved
characterisation of Majumdar-Papapetrou, by only requiring a conformally flat
space of orbits with a vanishing Ricci scalar of the usual conveniently
rescaled 3-metric. A simple global consideration allows us to state that the
asymptotically flat subset of the Majumdar-Papapetrou class and the
Reissner-Nordstr\"om exterior solution are the only asymptotically flat
conformastat electrovacuum spacetimes.Comment: LaTeX; 31 pages. Uses iopart style file
Perturbed Self-Similar Massless Scalar Field in the Spacetimes with Circular Symmetry in 2+1 Gravity
We present in this work the study of the linear perturbations of the
2+1-dimensional circularly symmetric solution, obtained in a previous work,
with kinematic self-similarity of the second kind. We have obtained an exact
solution for the perturbation equations and the possible perturbation modes. We
have shown that the background solution is a stable solution.Comment: no figure
Local free-fall temperature of a RN-AdS black hole
We use the global embedding Minkowski space (GEMS) geometries of a
(3+1)-dimensional curved Reissner-Nordstr\"om(RN)-AdS black hole spacetime into
a (5+2)-dimensional flat spacetime to define a proper local temperature, which
remains finite at the event horizon, for freely falling observers outside a
static black hole. Our extended results include the known limiting cases of the
RN, Schwarzschild--AdS, and Schwarzschild black holes.Comment: 18 pages, 11 figures, version to appear in Int. J. Mod. Phys.
A spacetime characterization of the Kerr metric
We obtain a characterization of the Kerr metric among stationary,
asymptotically flat, vacuum spacetimes, which extends the characterization in
terms of the Simon tensor (defined only in the manifold of trajectories) to the
whole spacetime. More precisely, we define a three index tensor on any
spacetime with a Killing field, which vanishes identically for Kerr and which
coincides in the strictly stationary region with the Simon tensor when
projected down into the manifold of trajectories. We prove that a stationary
asymptotically flat vacuum spacetime with vanishing spacetime Simon tensor is
locally isometric to Kerr. A geometrical interpretation of this
characterization in terms of the Weyl tensor is also given. Namely, a
stationary, asymptotically flat vacuum spacetime such that each principal null
direction of the Killing form is a repeated principal null direction of the
Weyl tensor is locally isometric to Kerr.Comment: 23 pages, No figures, LaTeX, to appear in Classical and Quantum
Gravit
Equatorial circular orbits in the Kerr-de Sitter spacetimes
Equatorial motion of test particles in the Kerr-de Sitter spacetimes is
considered. Circular orbits are determined, their properties are discussed for
both the black-hole and naked-singularity spacetimes, and their relevance for
thin accretion discs is established.Comment: 24 pages, 19 figures, REVTeX
- …
