23,215 research outputs found
Strong GeV Emission Accompanying TeV Blazar H1426+428
For High frequency BL Lac objects (HBLs) like H1426+428, a significant
fraction of their TeV gamma-rays emitted are likely to be absorbed in
interactions with the diffuse IR background, yielding pairs. The
resulting pairs generate one hitherto undiscovered GeV emission by
inverse Compton scattering with the cosmic microwave background photons
(CMBPs). We study such emission by taking the 1998-2000 CAT data, the
reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra
proposed by Aharonian et al. (2003a). We numerically calculate the scattered
photon spectra for different intergalactic magnetic field (IGMF) strengths. If
the IGMF is about or weaker, there comes very strong GeV
emission, whose flux is far above the detection sensitivity of the upcoming
satellite GLAST! Considered its relatively high redshift (), the
detected GeV emission in turn provides us a valuable chance to calibrate the
poor known spectral energy distribution of the intergalactic infrared
background, or provides us some reliable constraints on the poorly known IGMF
strength.Comment: 5 pages, 1 figure. A&A in Pres
Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-Energy Follow-up Observations
Recently, a precise (sub-arcsecond) localization of the repeating fast radio
burst (FRB) 121102 has led to the discovery of persistent radio and optical
counterparts, the identification of a host dwarf galaxy at a redshift of
, and several campaigns of searches for higher-frequency counterparts,
which gave only upper limits on the emission flux. Although the origin of FRBs
remains unknown, most of the existing theoretical models are associated with
pulsars, or more specifically, magnetars. In this paper, we explore persistent
high-energy emission from a rapidly rotating highly magnetized pulsar
associated with FRB 121102 if internal gradual magnetic dissipation occurs in
the pulsar wind. We find that the efficiency of converting the spin-down
luminosity to the high-energy (e.g., X-ray) luminosity is generally much
smaller than unity, even for a millisecond magnetar. This provides an
explanation for the non-detection of high-energy counterparts to FRB 121102. We
further constrain the spin period and surface magnetic field strength of the
pulsar with the current high-energy observations. In addition, we compare our
results with the constraints given by the other methods in previous works and
would expect to apply our new method to some other open issues in the future.Comment: 6 pages, 5 figures, ApJ in press, minor changes due to proof
correction
Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields
We generally analyze prompt high-energy emission above a few hundreds of GeV
due to synchrotron self-Compton scattering in internal shocks. However, such
photons cannot be detected because they may collide with cosmic infrared
background photons, leading to electron/positron pair production.
Inverse-Compton scattering of the resulting electron/positron pairs off cosmic
microwave background photons will produce delayed MeV-GeV emission, which may
be much stronger than a typical high-energy afterglow in the external shock
model. We expand on the Cheng & Cheng model by deriving the emission spectrum
and duration in the standard fireball shock model. A typical duration of the
emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum
is nu^{-(p+6)/4}, where p is the index of the electron energy distribution
behind internal shocks. This is slightly harder than the synchrotron photon
spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon
spectrum is dependent on the spectral energy distribution of the cosmic
infrared background radiation. Therefore, future observations on such delayed
MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large
Area Space Telescope (GLAST) would provide a probe of the cosmic infrared
background radiation.Comment: 5 pages, accepted for publication in Ap
Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs
For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock
crosses the ejecta, usually the shocked regions are still precipitated by the
prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV
photon flow with the shocked regions, the optical depth for the GeV photons
produced in the shocks is very large. These high energy photons are absorbed by
the MeV photon flow and generate relativistic e^\pm pairs. These pairs
re-scatter the soft X-ray photons from the forward shock as well as the prompt
\gamma-ray photons and power detectable high energy emission, significant part
of which is in the sub-GeV energy range. Since the total energy contained in
the forward shock region and the reverse shock region are comparable, the
predicted sub-GeV emission is independent on whether the GRB ejecta are
magnetized (in which case the reverse shock IC and synchrotron self-Compton
emission is suppressed). As a result, a sub-GeV flash is a generic signature
for the GRB wind model, and it should be typically detectable by the future
{\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence
neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission
powered by the interaction of the shock accelerated protons with the
synchrotron photons in both the forward and reverse shock regions, there comes
another eV neutrino emission component powered by protons interacting
with the MeV photon flow. This last component has a similar spectrum to the one
generated in the internal shock phase, but the typical energy is slightly
lower.Comment: 7 pages, accepted for publication in Ap
Gamma-ray bursts: postburst evolution of fireballs
The postburst evolution of fireballs that produce -ray bursts is
studied, assuming the expansion of fireballs to be adiabatic and relativistic.
Numerical results as well as an approximate analytic solution for the evolution
are presented. Due to adoption of a new relation among , and
(see the text), our results differ markedly from the previous studies.
Synchrotron radiation from the shocked interstellar medium is attentively
calculated, using a convenient set of equations. The observed X-ray flux of GRB
afterglows can be reproduced easily. Although the optical afterglows seem much
more complicated, our results can still present a rather satisfactory approach
to observations. It is also found that the expansion will no longer be highly
relativistic about 4 days after the main GRB. We thus suggest that the
marginally relativistic phase of the expansion should be investigated so as to
check the afterglows observed a week or more later.Comment: 17 pages, 4 figures, MNRAS in pres
Is GRO J1744-28 a Strange Star?
The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton
Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar
magnetic field Gauss. When the accreted mass of the star exceeds
some critical mass, its crust may break, resulting in conversion of the
accreted matter into strange matter and release of energy. Subsequently, a
fireball may form and expand relativistically outward. The expanding fireball
may interact with the surrounding interstellar medium, causing its kinetic
energy to be radiated in shock waves, producing a burst of x-ray radiation. The
burst energy, duration, interval and spectrum derived from such a model are
consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40
Hyperaccretion Disks around Neutron Stars
(Abridged) We here study the structure of a hyperaccretion disk around a
neutron star. We consider a steady-state hyperaccretion disk around a neutron
star, and as a reasonable approximation, divide the disk into two regions,
which are called inner and outer disks. The outer disk is similar to that of a
black hole and the inner disk has a self-similar structure. In order to study
physical properties of the entire disk clearly, we first adopt a simple model,
in which some microphysical processes in the disk are simplified, following
Popham et al. and Narayan et al. Based on these simplifications, we
analytically and numerically investigate the size of the inner disk, the
efficiency of neutrino cooling, and the radial distributions of the disk
density, temperature and pressure. We see that, compared with the black-hole
disk, the neutron star disk can cool more efficiently and produce a much higher
neutrino luminosity. Finally, we consider an elaborate model with more physical
considerations about the thermodynamics and microphysics in the neutron star
disk (as recently developed in studying the neutrino-cooled disk of a black
hole), and compare this elaborate model with our simple model. We find that
most of the results from these two models are basically consistent with each
other.Comment: 44 pages, 10 figures, improved version following the referees'
comments, main conclusions unchanged, accepted for publication in Ap
- …
