6,566 research outputs found
A homotopy approach to the computation of economic equilibria on the unit simplex
Equilibrium Theory
An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL
An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy
On the momentum-dependence of -nuclear potentials
The momentum dependent -nucleus optical potentials are obtained based
on the relativistic mean-field theory. By considering the quarks coordinates of
meson, we introduced a momentum-dependent "form factor" to modify the
coupling vertexes. The parameters in the form factors are determined by fitting
the experimental -nucleus scattering data. It is found that the real
part of the optical potentials decrease with increasing momenta, however
the imaginary potentials increase at first with increasing momenta up to
MeV and then decrease. By comparing the calculated mean
free paths with those from / scattering data, we suggested that the
real potential depth is MeV, and the imaginary potential parameter
is MeV.Comment: 9 pages, 4 figure
Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping
We report the effect of nonmagnetic Ti4+ impurities on the electronic and
magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the
characteristic peak in magnetic susceptibility near 16 K and result in a sharp
upturn in specific heat. The metamagnetic quantum phase transition and related
anomalous features are quickly smeared out by small amounts of Ti. These
results provide strong evidence for the existence of competing magnetic
fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low
temperature antiferromagnetic interactions that arise from Fermi surface
nesting, leaving the system in a state dominated by ferromagnetic fluctuations.Comment: 5 pages, 4 figures, 1 tabl
Relativistic Coulomb Sum Rules for
A Coulomb sum rule is derived for the response of nuclei to
scattering with large three-momentum transfers. Unlike the nonrelativistic
formulation, the relativistic Coulomb sum is restricted to spacelike
four-momenta for the most direct connection with experiments; an immediate
consequence is that excitations involving antinucleons, e.g., pair
production, are approximately eliminated from the sum rule. Relativistic recoil
and Fermi motion of target nucleons are correctly incorporated. The sum rule
decomposes into one- and two-body parts, with correlation information in the
second. The one-body part requires information on the nucleon momentum
distribution function, which is incorporated by a moment expansion method. The
sum rule given through the second moment (RCSR-II) is tested in the Fermi gas
model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author
Solubility isotope effects in aqueous solutions of methane
The isotope effect on the Henry's law coefficients of methane in
aqueous solution (H/D and C-12/C-13 substitution) are interpreted using
the statistical mechanical theory of condensed phase isotope effects.
The missing spectroscopic data needed for the implementation of the
theory were obtained either experimentally (infrared measurements), by
computer simulation (molecular dynamics technique), or estimated using
the Wilson's GF matrix method. The order of magnitude and sign of both
solute isotope effects can be predicted by the theory. Even a crude
estimation based on data from previous vapor pressure isotope effect
studies of pure methane at low temperature can explain the inverse
effect found for the solubility of deuterated methane in water. (C)
2002 American Institute of Physics
Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes
In this paper we address the problem of multiple camera calibration in the
presence of a homogeneous scene, and without the possibility of employing
calibration object based methods. The proposed solution exploits salient
features present in a larger field of view, but instead of employing active
vision we replace the cameras with stereo rigs featuring a long focal analysis
camera, as well as a short focal registration camera. Thus, we are able to
propose an accurate solution which does not require intrinsic variation models
as in the case of zooming cameras. Moreover, the availability of the two views
simultaneously in each rig allows for pose re-estimation between rigs as often
as necessary. The algorithm has been successfully validated in an indoor
setting, as well as on a difficult scene featuring a highly dense pilgrim crowd
in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application
A Unified Quantum NOT Gate
We study the feasibility of implementing a quantum NOT gate (approximate)
when the quantum state lies between two latitudes on the Bloch's sphere and
present an analytical formula for the optimized 1-to- quantum NOT gate. Our
result generalizes previous results concerning quantum NOT gate for a quantum
state distributed uniformly on the whole Bloch sphere as well as the phase
covariant quantum state. We have also shown that such 1-to- optimized NOT
gate can be implemented using a sequential generation scheme via matrix product
states (MPS)
- …
