54,964 research outputs found

    Layout Decomposition for Quadruple Patterning Lithography and Beyond

    Full text link
    For next-generation technology nodes, multiple patterning lithography (MPL) has emerged as a key solution, e.g., triple patterning lithography (TPL) for 14/11nm, and quadruple patterning lithography (QPL) for sub-10nm. In this paper, we propose a generic and robust layout decomposition framework for QPL, which can be further extended to handle any general K-patterning lithography (K>>4). Our framework is based on the semidefinite programming (SDP) formulation with novel coloring encoding. Meanwhile, we propose fast yet effective coloring assignment and achieve significant speedup. To our best knowledge, this is the first work on the general multiple patterning lithography layout decomposition.Comment: DAC'201

    Capacity of The Discrete-Time Non-Coherent Memoryless Gaussian Channels at Low SNR

    Full text link
    We address the capacity of a discrete-time memoryless Gaussian channel, where the channel state information (CSI) is neither available at the transmitter nor at the receiver. The optimal capacity-achieving input distribution at low signal-to-noise ratio (SNR) is precisely characterized, and the exact capacity of a non-coherent channel is derived. The derived relations allow to better understanding the capacity of non-coherent channels at low SNR. Then, we compute the non-coherence penalty and give a more precise characterization of the sub-linear term in SNR. Finally, in order to get more insight on how the optimal input varies with SNR, upper and lower bounds on the non-zero mass point location of the capacity-achieving input are given.Comment: 5 pages and 4 figures. To appear in Proceeding of International Symposium on Information Theory (ISIT 2008

    End-to-end Distance from the Green's Function for a Hierarchical Self-Avoiding Walk in Four Dimensions

    Full text link
    In [BEI] we introduced a Levy process on a hierarchical lattice which is four dimensional, in the sense that the Green's function for the process equals 1/x^2. If the process is modified so as to be weakly self-repelling, it was shown that at the critical killing rate (mass-squared) \beta^c, the Green's function behaves like the free one. - Now we analyze the end-to-end distance of the model and show that its expected value grows as a constant times \sqrt{T} log^{1/8}T (1+O((log log T)/log T)), which is the same law as has been conjectured for self-avoiding walks on the simple cubic lattice Z^4. The proof uses inverse Laplace transforms to obtain the end-to-end distance from the Green's function, and requires detailed properties of the Green's function throughout a sector of the complex \beta plane. These estimates are derived in a companion paper [math-ph/0205028].Comment: 29 pages, v2: reference

    Ranking News-Quality Multimedia

    Full text link
    News editors need to find the photos that best illustrate a news piece and fulfill news-media quality standards, while being pressed to also find the most recent photos of live events. Recently, it became common to use social-media content in the context of news media for its unique value in terms of immediacy and quality. Consequently, the amount of images to be considered and filtered through is now too much to be handled by a person. To aid the news editor in this process, we propose a framework designed to deliver high-quality, news-press type photos to the user. The framework, composed of two parts, is based on a ranking algorithm tuned to rank professional media highly and a visual SPAM detection module designed to filter-out low-quality media. The core ranking algorithm is leveraged by aesthetic, social and deep-learning semantic features. Evaluation showed that the proposed framework is effective at finding high-quality photos (true-positive rate) achieving a retrieval MAP of 64.5% and a classification precision of 70%.Comment: To appear in ICMR'1

    Triple Patterning Lithography (TPL) Layout Decomposition using End-Cutting

    Full text link
    Triple patterning lithography (TPL) is one of the most promising techniques in the 14nm logic node and beyond. However, traditional LELELE type TPL technology suffers from native conflict and overlapping problems. Recently LELEEC process was proposed to overcome the limitations, where the third mask is used to generate the end-cuts. In this paper we propose the first study for LELEEC layout decomposition. Conflict graphs and end-cut graphs are constructed to extract all the geometrical relationships of input layout and end-cut candidates. Based on these graphs, integer linear programming (ILP) is formulated to minimize the conflict number and the stitch number

    L-Shape based Layout Fracturing for E-Beam Lithography

    Full text link
    Layout fracturing is a fundamental step in mask data preparation and e-beam lithography (EBL) writing. To increase EBL throughput, recently a new L-shape writing strategy is proposed, which calls for new L-shape fracturing, versus the conventional rectangular fracturing. Meanwhile, during layout fracturing, one must minimize very small/narrow features, also called slivers, due to manufacturability concern. This paper addresses this new research problem of how to perform L-shaped fracturing with sliver minimization. We propose two novel algorithms. The first one, rectangular merging (RM), starts from a set of rectangular fractures and merges them optimally to form L-shape fracturing. The second algorithm, direct L-shape fracturing (DLF), directly and effectively fractures the input layouts into L-shapes with sliver minimization. The experimental results show that our algorithms are very effective
    corecore