2,682 research outputs found
On the Coulomb-Sturmian matrix elements of the Coulomb Green's operator
The two-body Coulomb Hamiltonian, when calculated in Coulomb-Sturmian basis,
has an infinite symmetric tridiagonal form, also known as Jacobi matrix form.
This Jacobi matrix structure involves a continued fraction representation for
the inverse of the Green's matrix. The continued fraction can be transformed to
a ratio of two hypergeometric functions. From this result we find
an exact analytic formula for the matrix elements of the Green's operator of
the Coulomb Hamiltonian.Comment: 8 page
Sneutrino Dark Matter: Symmetry Protection and Cosmic Ray Anomalies
We present an R-parity conserving model of sneutrino dark matter within a
Higgs-philic U(1)' extension of the minimal supersymmetric standard model. In
this theory, the mu parameter and light Dirac neutrino masses are generated
naturally upon the breaking of the U(1)' gauge symmetry. The leptonic and
hadronic decays of sneutrinos in this model, taken to be the lightest and
next-to-lightest superpartners, allow for a natural fit to the recent results
reported by the PAMELA experiment.Comment: Revised to match the published version; 11 pages (2 column format), 1
table, 6 figures, to appear in PR
Ultrafine conducting fibers: metallization of poly(acrylonitrile-co-glycidyl methacrylate) nanofibers
Electrospun poly(glycidylmethacrylate) (PGMA) and poly(acrylonitrile-co-glycidyl methacrylate) (P(AN-GMA)) nanofibers were coated with monodisperse silver nanoparticles by using an electroless plating technique at ambient conditions. Oxirane groups on the surface of nanofibers were replaced with reducing agent, hydrazine. Surface modified nanofibers were allowed to react with ammonia solution of AgNO3. A redox reaction takes place and metallic silver nucleate on fibers surface. Parameters affecting the particle size were determined
Macrocrystals of Colloidal Quantum Dots in Anthrancene: Exciton Trannsfer and Polarized Emission
Cataloged from PDF version of article.In this work, centimeter-scale macrocrystals of nonpolar colloidal quantum dots (QDs) incorporated into anthracene were grown for the first time. The exciton transfer from the anthracene host to acceptor QDs was systematically investigated, and anisotropic emission from the isotropic QDs in the anthracene macrocrystals was discovered. Results showed a decreasing photoluminescence lifetime of the donor anthracene, indicating a strengthening energy transfer with increasing QD concentration in the macrocrystals. With the anisotropy study, QDs inside the anthracene host acquired a polarization ratio of similar to 1.5 at 0 degrees collection angle, and this increases to similar to 2.5 at the collection angle of 60 degrees. A proof-of-concept application of these excitonic macrocrystals as tunable color converters on light-emitting diodes was also demonstrated
InGaN/GaN light-emitting diode with a polarization tunnel junction
Cataloged from PDF version of article.We report InGaN/GaN light-emitting diodes (LED) comprising in situ integrated p(+)-GaN/InGaN/n(+)-GaN polarization tunnel junctions. Improved current spreading and carrier tunneling probability were obtained in the proposed device architecture, leading to the enhanced optical output power and external quantum efficiency. Compared to the reference InGaN/GaN LEDs using the conventional p(+)/n(+) tunnel junction, these devices having the polarization tunnel junction show a reduced forward bias, which is attributed to the polarization induced electric fields resulting from the in-plane biaxial compressive strain in the thin InGaN layer sandwiched between the p(+)-GaN and n(+)-GaN layers. (C) 2013 AIP Publishing LLC
On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer
Cataloged from PDF version of article.A redshift of the peak emission wavelength was observed in the blue light emitting diodes of InGaN/GaN grown with a higher temperature interlayer that was sandwiched between the low-temperature buffer layer and high-temperature unintentionally doped GaN layer. The effect of interlayer growth temperature on the emission wavelength was probed and studied by optical, structural, and electrical properties. Numerical studies on the effect of indium composition and quantum confinement Stark effect were also carried out to verify the experimental data. The results suggest that the redshift of the peak emission wavelength is originated from the enhanced indium incorporation, which results from the reduced strain during the growth of quantum wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694054
Shear Viscosity in a Perturbative Quark-Gluon-Plasma
Among the key features of hot and dense QCD matter produced in
ultra-relativistic heavy-ion collisions at RHIC is its very low shear
viscosity, indicative of the properties of a near-ideal fluid, and a large
opacity demonstrated by jet energy loss measurements. In this work, we utilize
a microscopic transport model based on the Boltzmann equation with quark and
gluon degrees of freedom and cross sections calculated from perturbative
Quantum Chromodynamics to simulate an ideal Quark-Gluon-Plasma in full thermal
and chemical equilibrium. We then use the Kubo formalism to calculate the shear
viscosity to entropy density ratio of the medium as a function of temperature
and system composition. One of our key results is that the shear viscosity over
entropy-density ratio becomes invariant to the chemical composition of
the system when plotted as a function of energy-density instead of temperature.Comment: 11 pages, 8 figures: version #2 contains some revisions and added
references to clarify relationship to previously published wor
- …
