33,823 research outputs found
Robust variable selection in partially varying coefficient single-index model
By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048
Hole-Doped Cuprate High Temperature Superconductors
Hole-doped cuprate high temperature superconductors have ushered in the
modern era of high temperature superconductivity (HTS) and have continued to be
at center stage in the field. Extensive studies have been made, many compounds
discovered, voluminous data compiled, numerous models proposed, many review
articles written, and various prototype devices made and tested with better
performance than their nonsuperconducting counterparts. The field is indeed
vast. We have therefore decided to focus on the major cuprate materials systems
that have laid the foundation of HTS science and technology and present several
simple scaling laws that show the systematic and universal simplicity amid the
complexity of these material systems, while referring readers interested in the
HTS physics and devices to the review articles. Developments in the field are
mostly presented in chronological order, sometimes with anecdotes, in an
attempt to share some of the moments of excitement and despair in the history
of HTS with readers, especially the younger ones.Comment: Accepted for publication in Physica C, Special Issue on
Superconducting Materials; 27 pages, 2 tables, 30 figure
Generation of entangled photons by trapped ions in microcavities under a magnetic field gradient
We propose a potential scheme to generate entangled photons by manipulating
trapped ions embedded in two-mode microcavities, respectively, assisted by a
magnetic field gradient. By means of the spin-spin coupling due to the magnetic
field gradient and the Coulomb repulsion between the ions, we show how to
efficiently generate entangled photons by detecting the internal states of the
trapped ions. We emphasize that our scheme is advantageous to create complete
sets of entangled multi-photon states. The requirement and the experimental
feasibility of our proposal are discussed in detail.Comment: 2 Tables, 2 Figures, To appear in Phys. Rev.
Pentaquark Magnetic Moments In Different Models
We calculate the magnetic moments of the pentaquark states from different
models and compare our results with predictions of other groups.Comment: 17 pages, no figur
Magnetic Moments of Pentaquarks
If the of and pentaquarks is really found to
be by future experiments, they will be accompanied by
partners in some models. It is reasonable to expect that
these states will also be discovered in the near future with
the current intensive experimental and theoretical efforts. We estimate
pentaquark magnetic moments using different models.Comment: 13 page
Alternative scheme for two-qubit conditional phase gate by adiabatic passage under dissipation
We check a recent proposal [H. Goto and K. Ichimura Phys. Rev. A 70, 012305
(2004)] for controlled phase gate through adiabatic passage under the influence
of spontaneous emission and the cavity decay. We show a modification of above
proposal could be used to generate the necessary conditional phase gates in the
two-qubit Grover search. Conditioned on no photon leakage either from the
atomic excited state or from the cavity mode during the gating period, we
numerically analyze the success probability and the fidelity of the two-qubit
conditional phase gate by adiabatic passage. The comparison made between our
proposed gating scheme and a previous one shows that Goto and Ichimura's scheme
is an alternative and feasible way in the optical cavity regime for two-qubit
gates and could be generalised in principle to multi-qubit gates.Comment: to appear in J. Phys.
Temperature - pressure phase diagram of the superconducting iron pnictide LiFeP
Electrical-resistivity and magnetic-susceptibility measurements under
hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting
LiFeP. A broad superconducting (SC) region exists in the temperature - pressure
(T-p) phase diagram. No indications for a spin-density-wave transition have
been found, but an enhanced resistivity coefficient at low pressures hints at
the presence of magnetic fluctuations. Our results show that the
superconducting state in LiFeP is more robust than in the isostructural and
isoelectronic LiFeAs. We suggest that this finding is related to the nearly
regular [FeP_4] tetrahedron in LiFeP.Comment: 4 pages, 4 figure
Simple scheme for two-qubit Grover search in cavity QED
Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R)
(2002)], we present an alternative way to implement the two-qubit Grover search
algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a
strong resonant classical field added, our method is insensitive to both the
cavity decay and thermal field, and doesn't require that the cavity remain in
the vacuum state throughout the procedure. Moreover, the qubit definitions are
the same for both atoms, which makes the experiment easier. The strictly
numerical simulation shows that our proposal is good enough to demonstrate a
two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.
- …
