27 research outputs found

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Quantifying association of early proteinuria and estimated glomerular filtration rate changes with long-term kidney failure in C3 glomerulopathy and immune-complex membranoproliferative glomerulonephritis using the United Kingdom RaDaR Registry

    Get PDF
    \ua9 2025 International Society of Nephrology. Introduction: C3 glomerulopathy (C3G) and immune-complex membranoproliferative glomerulonephritis (IC-MPGN) are rare disorders that frequently result in kidney failure over the long-term. Presently, there are no disease-specific treatments approved for these disorders, although there is much interest in the therapeutic potential of complement inhibition. However, the limited duration and necessarily small size of controlled trials means there is a need to quantify how well short-term changes in estimated glomerular filtration rate (eGFR) and proteinuria predict the clinically important outcome of kidney failure. Methods: We address this using longitudinal data from the UK Registry of Rare Kidney Diseases (RaDaR) involving retrospective and prospective data collection with linkage to hospital laboratories via automated feeds of 371 patients. Analyses of kidney survival were conducted using Kaplan–Meier and Cox regression with eGFR slope estimated using linear mixed models. Results: In a median of 11.0 (inter quartile range 7.4-15.1) years follow-up, 148 patients (40%) reached kidney failure. There was no significant difference in progression to kidney failure between C3G and IC-MPGN groups. Baseline urine protein-creatinine ratio (UPCR), although high, was not associated with kidney failure in either group. Two-year eGFR slope had a modest association with kidney failure. In contrast, both 20%‒50% and 50 mg/mmol reductions in UPCR between 0-12 months were associated with lower kidney failure risk in both groups. Notably, those with a UPCR under 100 mg/mmol at 12 months had a substantially lower risk of kidney failure (hazard ratio 0.10 (95% confidence interval 0.03-0.30). Conclusions: Overall, proteinuria a short time after diagnosis is strongly associated with long-term outcomes and a UPCR under 100 mg/mmol at one year is associated with a substantially lower kidney failure risk

    Evaluation of Temporal Aggregation Processes Using Spatial Intensity Distribution Analysis

    No full text
    Small proteinaceous oligomeric species contribute to the formation of larger aggregates, a phenomenon that is of direct relevance to the characterization of protein aggregation in biopharmaceuticals and understanding the underlying processes contributing to neurodegenerative diseases.The ability to monitor in situ oligomerization and aggregation processes renders imaging and image analysis an attractive approach for gaining a mechanistic insight into early processes contributing to the formation of larger aggregates in disease models and biologics. The combination of image analysis tools enables the detection of both oligomeric and larger aggregate subtype in contrast to conventional kinetic-based approaches that lack the ability to resolve dimers from monomeric moieties in samples containing mixed populations.In this chapter, we describe the process for confocal time series image acquisition for monitoring the in situ loss of monomers, and the subsequent analysis pipeline using spatial intensity distribution analysis (SpIDA) to evaluate oligomer content.info:eu-repo/semantics/publishe

    Overview of Covid-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines

    No full text
    Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China. Common symptoms include fever, dry cough, and fatigue, but in acute cases, the disease can lead to severe shortness of breath, hypoxia, and death. According to the World Health Organization (WHO), the three main transmission routes, such as droplet and contact routes, airborne transmission and fecal and oral for COVID-19, have been identified. So far, no definitive curative treatment has been discovered for COVID-19, and the available treatments are only to reduce the complications of the disease. According to the World Health Organization, preventive measures at the public health level such as quarantine of the infected person, identification and monitoring of contacts, disinfection of the environment, and personal protective equipment can significantly prevent the outbreak COVID-19. Currently, based on the urgent needs of the community to control this pandemic, the BNT162b2 (Pfizer), mRNA-1273 (Moderna), CoronaVac (Sinovac), Sputnik V (Gamaleya Research Institute, Acellena Contract Drug Research, and Development), BBIBP-CorV (Sinofarm), and AZD1222 (The University of Oxford; AstraZeneca) vaccines have received emergency vaccination licenses from health organizations in vaccine-producing countries. Vasso Apostolopoulos, Majid Hassanzadeganroudsari © 2021 by the authors

    The use of spatial intensity distribution analysis to examine G protein-coupled receptor oligomerization

    No full text
    Spatial Intensity Distribution Analysis (SpIDA) is a new approach for detecting protein oligomerization states that can be applied not only to live cells but also fixed cells and native tissue. This approach is based on the generation of pixel-integrated fluorescence intensity histograms from laser scanning fluorescence microscopy images. These histograms are then fit with super-Poissonian distribution functions to obtain density maps and quantal brightness values of the fluorophore that are used to determine the proportions of monomer and dimers/oligomers of the fluorophore-tagged protein. In this chapter we describe SpIDA and highlight its advantages compared to other biochemical or biophysical approaches. We provide guidelines that should be useful to readers who wish to perform SpIDA measurements and describe the application of SpIDA as a post-acquisition imaging histogram analysis software tool to investigate the oligomeric state of G protein-coupled receptors (GPCRs) at the surface of mammalian cells in order to define the steady-state proportion of monomeric and dimeric/oligomeric forms and how this may be regulated by cellular challenges such as ligand treatment
    corecore