15,754 research outputs found

    Spring Cold Bias of SST and minimal wind mixing in the Equatorial Pacific Cold Tongue

    No full text
    AbstractThe authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3°C. A sensitivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface

    Blow up criterion for compressible nematic liquid crystal flows in dimension three

    Full text link
    In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of liquid crystal director field.Comment: 22 page

    Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    Get PDF
    We study the Kondo effect of a single magnetic adatom on the surface of graphene. It was shown that the unique linear dispersion relation near the Dirac points in graphene makes it more easy to form the local magnetic moment, which simply means that the Kondo resonance can be observed in a more wider parameter region than in the metallic host. The result indicates that the Kondo resonance indeed can form ranged from the Kondo regime, to the mixed valence, even to the empty orbital regime. While the Kondo resonance displays as a sharp peak in the first regime, it has a peak-dip structure and/or an anti-resonance in the remaining two regimes, which result from the Fano resonance due to the significant background leaded by dramatically broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle-hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to unusual large asymmetry factor in graphene. Our study indicates that the graphene is an ideal platform to study systematically the Kondo physics and these results are useful to further stimulate the relevant experimental studies on the system.Comment: 8 pages, 5 figure

    The signal of Z±(4430)Z^\pm(4430) in nucleon-antinucleon scattering

    Full text link
    We study the production of Z±(4430)Z^\pm(4430) at a nucleon-antinucleon scattering experiment. Considering the PANDA experiment to be an ideal platform to explore the production of the charmonium and charmonim-like states, we suggest the forthcoming PANDA experiment to pay attention to the production of Z±(4430)Z^\pm(4430).Comment: 6 pages, 15 figures. Published version in EPJ

    Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel.

    Get PDF
    α-Synuclein (aSyn) fibrillar polymorphs have distinct in vitro and in vivo seeding activities, contributing differently to synucleinopathies. Despite numerous prior attempts, how polymorphic aSyn fibrils differ in atomic structure remains elusive. Here, we present fibril polymorphs from the full-length recombinant human aSyn and their seeding capacity and cytotoxicity in vitro. By cryo-electron microscopy helical reconstruction, we determine the structures of the two predominant species, a rod and a twister, both at 3.7 Å resolution. Our atomic models reveal that both polymorphs share a kernel structure of a bent β-arch, but differ in their inter-protofilament interfaces. Thus, different packing of the same kernel structure gives rise to distinct fibril polymorphs. Analyses of disease-related familial mutations suggest their potential contribution to the pathogenesis of synucleinopathies by altering population distribution of the fibril polymorphs. Drug design targeting amyloid fibrils in neurodegenerative diseases should consider the formation and distribution of concurrent fibril polymorphs

    Towards a framework to evaluate the ‘total’ performance of buildings

    Get PDF
    Internationally, buildings are a major contributor to carbon emissions. Despite significant advances in the technology and construction of energy-efficient buildings, in many cases a performance gap between designed and actual performance exists. While much research has investigated the drivers of the building energy performance gap – both static and transient– there has been considerably less research into the total performance gap, defined here as performance gaps in building energy use, occupant satisfaction and Indoor Environmental Quality parameters such as thermal comfort and air quality which may impact on occupant health and wellbeing. This paper presents a meta-analysis of building performance data from buildings in the UK and China – selected due to their contrasting development environments – which illustrate the presence of and complexities of evaluating total performance gaps in both countries. The data demonstrate the need for (1) high end-use, spatial granularity and temporal resolution data for both energy and Indoor Environmental Quality, and (2) developing methodologies that allow meaningful comparisons between buildings internationally to facilitate learning from successful building design, construction methodologies and policy environments internationally. Using performance data from a UK building, a potential forward path is illustrated with the objective of developing a framework to evaluate total building performance. Practical application: While much research has examined building energy performance gaps, Indoor Environmental Quality and occupant satisfaction gaps are rarely included despite their relationship to energy. We use a meta-analysis of energy, indoor environmental quality, and occupant satisfaction data from buildings in the UK and China to illustrating the presence of and complexities of evaluating total performance gaps for buildings in the two countries, and the need for high resolution dynamic buildings data and novel methodologies for comparison between buildings across different contexts. Illustrative case studies are used to demonstrate potential future directions for evaluating ‘total’ building performance

    Y(so(5)) symmtry of the nonlinear Schro¨\ddot{o}dinger model with four-cmponents

    Full text link
    The quantum nonlinear Schro¨\ddot{o}dinger(NLS) model with four-component fermions exhibits a Y(so(5))Y(so(5)) symmetry when considered on an infintite interval. The constructed generators of Yangian are proved to satisfy the Drinfel'd formula and furthermore, the RTTRTT relation with the general form of rational R-matrix given by Yang-Baxterization associated with so(5)so(5) algebraic structure.Comment: 10 pages, no figure
    corecore