10,014 research outputs found
Classification of Arbitrary Multipartite Entangled States under Local Unitary Equivalence
We propose a practical method for finding the canonical forms of arbitrary
dimensional multipartite entangled states, either pure or mixed. By extending
the technique developed in one of our recent works, the canonical forms for the
mixed -partite entangled states are constructed where they have inherited
local unitary symmetries from their corresponding pure state
counterparts. A systematic scheme to express the local symmetries of the
canonical form is also presented, which provides a feasible way of verifying
the local unitary equivalence for two multipartite entangled states.Comment: 22 pages; published in J. Phys. A: Math. Theo
Gauged Q ball in a piecewise parabolic potential
Q ball solutions are considered within the theory of a complex scalar field
with a gauged
U(1) symmetry and a parabolic-type potential. In the thin-walled limit, we
show explicitly that there is a maximum size for these objects because of the
repulsive Coulomb force. The size of Q ball will increase with the decrease of
local minimum of the potential. And when the two minima degenerate, the energy
stored within the surface of the Q ball becomes significant.
Furthermore, we find an analytic expression for gauged Q ball, which is
beyond the conventional thin-walled limit.Comment: 1 figure
Circadian rhythms and mood: Opportunities for multi‐level analyses in genomics and neuroscience
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102671/1/bies201300141.pd
Electrically Tunable Polarizer Based on Graphene-loaded Plasmonic Cross Antenna
The unique gate-voltage dependent optical properties of graphene make it a
promising electrically-tunable plasmonic material. In this work, we proposed
in-situ control of the polarization of nanoantennas by combining plasmonic
structures with an electrostatically tunable graphene monolayer. The tunable
polarizer is designed based on an asymmetric cross nanoantenna comprising two
orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is
deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our
modelling demonstrates that as the chemical potential is incremented up to 1 eV
by electrostatic doping, resonant wavelength for the longer graphene-loaded
dipole is blue shifted for 500 nm (~ 10% of the resonance) in the mid-infrared
range, whereas the shorter dipole experiences much smaller influences due to
the unique wavelength-dependent optical properties of graphene. In this way,
the relative field amplitude and phase between the two dipole nanoantennas are
electrically adjusted, and the polarization state of the reflected wave can be
electrically tuned from the circular into near-linear states with the axial
ratio changing over 8 dB. Our study thus confirms the strong light-graphene
interaction with metallic nanostructures, and illuminates promises for
high-speed electrically controllable optoelectronic devices.Comment: 11 pages, 7 figure
Slow Adaptive OFDMA Systems Through Chance Constrained Programming
Adaptive OFDMA has recently been recognized as a promising technique for
providing high spectral efficiency in future broadband wireless systems. The
research over the last decade on adaptive OFDMA systems has focused on adapting
the allocation of radio resources, such as subcarriers and power, to the
instantaneous channel conditions of all users. However, such "fast" adaptation
requires high computational complexity and excessive signaling overhead. This
hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes
a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on
a much slower timescale than that of the fluctuation of instantaneous channel
conditions. Meanwhile, the data rate requirements of individual users are
accommodated on the fast timescale with high probability, thereby meeting the
requirements except occasional outage. Such an objective has a natural chance
constrained programming formulation, which is known to be intractable. To
circumvent this difficulty, we formulate safe tractable constraints for the
problem based on recent advances in chance constrained programming. We then
develop a polynomial-time algorithm for computing an optimal solution to the
reformulated problem. Our results show that the proposed slow adaptation scheme
drastically reduces both computational cost and control signaling overhead when
compared with the conventional fast adaptive OFDMA. Our work can be viewed as
an initial attempt to apply the chance constrained programming methodology to
wireless system designs. Given that most wireless systems can tolerate an
occasional dip in the quality of service, we hope that the proposed methodology
will find further applications in wireless communications
Formation of superheavy nuclei in cold fusion reactions
Within the concept of the dinuclear system (DNS), a dynamical model is
proposed for describing the formation of superheavy nuclei in complete fusion
reactions by incorporating the coupling of the relative motion to the nucleon
transfer process. The capture of two heavy colliding nuclei, the formation of
the compound nucleus and the de-excitation process are calculated by using an
empirical coupled channel model, solving a master equation numerically and
applying statistical theory, respectively. Evaporation residue excitation
functions in cold fusion reactions are investigated systematically and compared
with available experimental data. Maximal production cross sections of
superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles
are obtained. Isotopic trends in the production of the superheavy elements
Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal
combinations and the corresponding excitation energies are proposed.Comment: 18 pages, 8 figure
Possible Way to Synthesize Superheavy Element Z=117
Within the framework of the dinuclear system model, the production of
superheavy element Z=117 in possible projectile-target combinations is analyzed
systematically. The calculated results show that the production cross sections
are strongly dependent on the reaction systems. Optimal combinations,
corresponding excitation energies and evaporation channels are proposed in this
letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n
evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n
channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl
- …
