9,204 research outputs found
Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation
Combinatorial interaction testing is an important software testing technique
that has seen lots of recent interest. It can reduce the number of test cases
needed by considering interactions between combinations of input parameters.
Empirical evidence shows that it effectively detects faults, in particular, for
highly configurable software systems. In real-world software testing, the input
variables may vary in how strongly they interact, variable strength
combinatorial interaction testing (VS-CIT) can exploit this for higher
effectiveness. The generation of variable strength test suites is a
non-deterministic polynomial-time (NP) hard computational problem
\cite{BestounKamalFuzzy2017}. Research has shown that stochastic
population-based algorithms such as particle swarm optimization (PSO) can be
efficient compared to alternatives for VS-CIT problems. Nevertheless, they
require detailed control for the exploitation and exploration trade-off to
avoid premature convergence (i.e. being trapped in local optima) as well as to
enhance the solution diversity. Here, we present a new variant of PSO based on
Mamdani fuzzy inference system
\cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive
selection of its global and local search operations. We detail the design of
this combined algorithm and evaluate it through experiments on multiple
synthetic and benchmark problems. We conclude that fuzzy adaptive selection of
global and local search operations is, at least, feasible as it performs only
second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the
best mean test suite size, the fuzzy adaptation even outperforms DPSO
occasionally. We discuss the reasons behind this performance and outline
relevant areas of future work.Comment: 21 page
Level-crossing rate and average duration of fades for mobile radio channel with hyperbolically distributed scatterers
In this paper we study the geometrical and time-variant wireless vector channel model with hyperbolically distributed scatterers for a macrocell mobile environment. In this study we investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this recently-proposed model. The simulated results are verified against the analytical Clarke's channel model. In this paper we study the geometrical and time-variant wireless vector channel model with hyperbolically distributed scatterers for a macrocell mobile environment. In this study we investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this recently-proposed model. The simulated results are verified against the analytical Clarke's channel model
Time-frequency analysis of normal and abnormal biological signals
Due to the non-stationary, multicomponent nature of biomedical signals, the use of time-frequency analysis can be inevitable for these signals. The choice of the proper time-frequency distribution (TFD) that can reveal the exact multicomponent structure of biological signals is vital in many applications, including the diagnosis of medical abnormalities. In this paper, the instantaneous frequency (IF) estimation using four well-known TFDs is applied for analyzing biological signals. These TFDs are: the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CWD), the Exponential T-distribution (ETD) and the Hyperbolic T-distribution (HTD). Their performance over normal and abnormal biological signals as well as over multicomponent frequency modulation (FM) signals in additive Gaussian noise was compared. Moreover, the feasibility of utilizing the wavelet transform (WT) in IF estimation is also studied. The biological signals considered in this work are the surface electromyogram (SEMG) with the presence of ECG noise and abnormal cardiac signals. The abnormal cardiac signals were taken from a patient with malignant ventricular arrhythmia, and a patient with supraventricular arrhythmia. Simulation results showed that the HTD has a superior performance, in terms of resolution and cross-terms reduction, as compared to other time-frequency distributions
An Ensemble of Optimal Trees for Classification and Regression (OTE)
Predictive performance of a random forest ensemble is highly associated with the strength of individual trees and their diversity. Ensemble of a small number of accurate and diverse trees, if prediction accuracy is not compromised, will also reduce computational burden. We investigate the idea of integrating trees that are accurate and diverse. For this purpose, we utilize out-of-bag observation as validation sample from the training bootstrap samples to choose the best trees based on their individual performance and then assess these trees for diversity using Brier score. Starting from the first best tree, a tree is selected for the final ensemble if its addition to the forest reduces error of the trees that have already been added. A total of 35 bench mark problems on classification and regression are used to assess the performance of the proposed method and compare it with kNN, tree, random forest, node harvest and support vector machine. We compute unexplained variances and classification error rates for all the methods on the corresponding data sets. Our experiments reveal that the size of the ensemble is reduced significantly and better results are obtained in most of the cases. For further verification, a simulation study is also given where four tree style scenarios are considered to generate data sets with several structures
Molecular phylogeny and structure prediction of rice RFT1 protein
Rice is one of the most important species in the family of Poaceae. As one of the major crop that is consumed by world population, it is cultivated commercially in many parts of the world. Hence, the phylogeny study of this crop is crucial as a step for improvement of its breeding programs. Phylogenetic relationship among 12 rice cultivars that originated from two common sub-species; Indica and Japonica were inferred by comparing protein sequence data sets derived from its flowering time gene, namely RFT1 and analyzed using maximum parsimony (MP) method. The predicted structure of RFT1 protein was generated by I-TASSER server and analyzed using YASARA software. The result showed that the cultivars were classified into two major groups, where the first group (Japonica) evolved first followed by the second group (Indica). The findings suggested that some cultivars had a close relationship with each other even it is originates from different varieties. The relationships among these cultivars provide useful information for better understanding of molecular evolution process and designing good breeding program in order to generate new cultivar
Anti-infective and cytotoxic properties of Bupleurum marginatum
Bupleurum marginatum Wall. ex DC (Apiaceae) is a perennial herb widely used in traditional Chinese and Kampo medicine for the treatment of various infectious diseases. The biological activities of B. marginatum have not been fully investigated. This study aims to investigate the antitrypanosomal, antimicrobial and antiviral activities of methanol (ME) and dichloromethane (DCM) extracts of B. marginatum aerial parts and the ability of both extracts to inhibit the growth of different cancer cell lines. Methods Phytochemical characterization of the extracts was performed by LC-MS profiling. The antitrypanosomal activity was evaluated using the resazurin method. The antimicrobial activity was assessed using agar diffusion and microdilution methods, and the minimum inhibitory concentration (MIC) values were determined. The antiviral activity was determined for 6.25, 12.5, and 50 μg/mL doses using a plaque reduction assay. Cytotoxicity was investigated in eight cancer cell lines (Caco-2, CCL-81, CCRF-CEM, COS-7, HL-60, MIA PaCa-2, MCF-7, and PANC-1) using the MTT assay and the caspase 3/7 activity was determined over the range of 62.5–1000 μg/mL. Results Phytochemical analyses resulted in the characterization of 15 components, mainly flavonoids and lignans. The DCM extract showed significant antitrypanosomal activity (IC50: 36.21 μg/mL) and moderate activity against Streptococcus pyogenes (MIC value: 0.25 mg/mL). At a dose of 12.5 μg/mL, the DCM extract inhibited 73.6% of the plaque production by hepatitis A virus. CCRF-CEM cells were the most sensitive to both extracts (IC50: 12.5–22.7 μg/mL). The cytotoxicity was mediated by induction of apoptosis (19-fold increase in the cellular caspase 3/7 level after treatment with the DCM extract at 1 mg/mL). Conclusions ME and DCM extract of B. marginatum showed anti-infective and antiproliferative effects
Marvel analysis of the measured high-resolution rovibrational spectra of H2S
44325 measured and assigned transitions of HS, the parent
isotopologue of the hydrogen sulfide molecule, are collated from 33
publications into a single database and reviewed critically. Based on this
information, rotation-vibration energy levels are determined for the ground
electronic state using the Measured Active Rotational-Vibrational Energy Levels
(MARVEL) technique. The ortho and para principal components of the measured
spectroscopic network of HS are considered separately. The verified
set of 25293 ortho- and 18778 para- HS transitions determine 3969
ortho and 3467 para energy levels. The Marvel results are compared with
alternative data compilations, including a theoretical variational linelist.Comment: 39 pages, 3 figures, JQSRT, 201
Transition from small to large world in growing networks
We examine the global organization of growing networks in which a new vertex
is attached to already existing ones with a probability depending on their age.
We find that the network is infinite- or finite-dimensional depending on
whether the attachment probability decays slower or faster than .
The network becomes one-dimensional when the attachment probability decays
faster than . We describe structural characteristics of these
phases and transitions between them.Comment: 5 page
Squeezing of a coupled state of two spinors
The notion of spin squeezing involves reduction in the uncertainty of a
component of the spin vector below a certain limit. This aspect has been
studied earlier for pure and mixed states of definite spin. In this paper, this
study has been extended to coupled spin states which do not possess sharp spin
value. A general squeezing criterion has been obtained by requiring that a
direct product state for two spinors is not squeezed. The squeezing aspect of
entangled states is studied in relation to their spin- spin correlations.Comment: Typeset in LaTeX 2e using the style iopart, packages
iopams,times,amssymb,graphicx; 17 pages, 5 eps figure file
- …
